[SLSR] handle candidate form (B + i * S)

Summary:
With this patch, SLSR may rewrite

S1: X = B + i * S
S2: Y = B + i' * S

to

S2: Y = X + (i' - i) * S

A secondary improvement: if (i' - i) is a power of 2, emit Y as X + (S << log(i' - i)). (S << log(i' -i)) is in a canonical form and thus more likely GVN'ed than (i' - i) * S.

Test Plan: slsr-add.ll

Reviewers: hfinkel, sanjoy, meheff, broune, eliben

Reviewed By: eliben

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8983

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235019 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jingyue Wu 2015-04-15 16:46:13 +00:00
parent 6d9fd9bc70
commit d4ceea3837
4 changed files with 340 additions and 94 deletions

View File

@ -15,42 +15,46 @@
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidates in two forms:
// reduction candidates in the following forms:
//
// Form 1: (B + i) * S
// Form 2: &B[i * S]
// Form 1: B + i * S
// Form 2: (B + i) * S
// Form 3: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
// candidates
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
// in a simpler way with respect to S1. For example,
//
// S1: X = B + i * S
// S2: Y = B + i' * S => X + (i' - i) * S
//
// S1: X = (B + i) * S
// S2: Y = (B + i') * S
//
// or
// S2: Y = (B + i') * S => X + (i' - i) * S
//
// S1: X = &B[i * S]
// S2: Y = &B[i' * S]
// S2: Y = &B[i' * S] => &X[(i' - i) * S]
//
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
// Note: (i' - i) * S is folded to the extent possible.
//
// Y = X + (i' - i) * S
// This rewriting is in general a good idea. The code patterns we focus on
// usually come from loop unrolling, so (i' - i) * S is likely the same
// across iterations and can be reused. When that happens, the optimized form
// takes only one add starting from the second iteration.
//
// or
//
// Y = &X[(i' - i) * S]
//
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
// basis, the basis that is the closest ancestor in the dominator tree.
//
// TODO:
//
// - Handle candidates in the form of B + i * S
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
// left as future work.
//
// - When (i' - i) is constant but i and i' are not, we could still perform
// SLSR.
#include <vector>
#include "llvm/ADT/DenseSet.h"
@ -72,13 +76,12 @@ namespace {
class StraightLineStrengthReduce : public FunctionPass {
public:
// SLSR candidate. Such a candidate must be in the form of
// (Base + Index) * Stride
// or
// Base[..][Index * Stride][..]
// SLSR candidate. Such a candidate must be in one of the forms described in
// the header comments.
struct Candidate : public ilist_node<Candidate> {
enum Kind {
Invalid, // reserved for the default constructor
Add, // B + i * S
Mul, // (B + i) * S
GEP, // &B[..][i * S][..]
};
@ -92,14 +95,14 @@ public:
Basis(nullptr) {}
Kind CandidateKind;
const SCEV *Base;
// Note that Index and Stride of a GEP candidate may not have the same
// integer type. In that case, during rewriting, Stride will be
// Note that Index and Stride of a GEP candidate do not necessarily have the
// same integer type. In that case, during rewriting, Stride will be
// sign-extended or truncated to Index's type.
ConstantInt *Index;
Value *Stride;
// The instruction this candidate corresponds to. It helps us to rewrite a
// candidate with respect to its immediate basis. Note that one instruction
// can corresponds to multiple candidates depending on how you associate the
// can correspond to multiple candidates depending on how you associate the
// expression. For instance,
//
// (a + 1) * (b + 2)
@ -143,31 +146,43 @@ private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
// Returns whether the candidate can be folded into an addressing mode.
bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
const DataLayout *DL);
// Returns true if C is already in a simplest form and not worth being
// rewritten.
bool isSimplestForm(const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
void allocateCandidateAndFindBasis(Instruction *I);
void allocateCandidatesAndFindBasis(Instruction *I);
// Allocate candidates and find bases for Add instructions.
void allocateCandidatesAndFindBasisForAdd(Instruction *I);
// Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
// candidate.
void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for Mul instructions.
void allocateCandidateAndFindBasisForMul(Instruction *I);
void allocateCandidatesAndFindBasisForMul(Instruction *I);
// Splits LHS into Base + Index and, if succeeds, calls
// allocateCandidateAndFindBasis.
void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS,
Instruction *I);
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for GetElementPtr instructions.
void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP);
void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
// A helper function that scales Idx with ElementSize before invoking
// allocateCandidateAndFindBasis.
void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
Value *S, uint64_t ElementSize,
Instruction *I);
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
Value *S, uint64_t ElementSize,
Instruction *I);
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
// basis.
void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B,
ConstantInt *Idx, Value *S,
Instruction *I);
void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
ConstantInt *Idx, Value *S,
Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
// A helper function that factors ArrayIdx to a product of a stride and a
// constant index, and invokes allocateCandidateAndFindBasis with the
// constant index, and invokes allocateCandidatesAndFindBasis with the
// factorings.
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
GetElementPtrInst *GEP);
@ -187,7 +202,7 @@ private:
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
// after all rewriting finishes.
DenseSet<Instruction *> UnlinkedInstructions;
std::vector<Instruction *> UnlinkedInstructions;
};
} // anonymous namespace
@ -215,9 +230,9 @@ bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
Basis.CandidateKind == C.CandidateKind);
}
static bool isCompletelyFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI,
const DataLayout *DL) {
static bool isGEPFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI,
const DataLayout *DL) {
GlobalVariable *BaseGV = nullptr;
int64_t BaseOffset = 0;
bool HasBaseReg = false;
@ -252,53 +267,143 @@ static bool isCompletelyFoldable(GetElementPtrInst *GEP,
BaseOffset, HasBaseReg, Scale);
}
// TODO: We currently implement an algorithm whose time complexity is linear to
// the number of existing candidates. However, a better algorithm exists. We
// could depth-first search the dominator tree, and maintain a hash table that
// contains all candidates that dominate the node being traversed. This hash
// table is indexed by the base and the stride of a candidate. Therefore,
// finding the immediate basis of a candidate boils down to one hash-table look
// up.
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
TargetTransformInfo *TTI) {
return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
Index->getSExtValue());
}
bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
TargetTransformInfo *TTI,
const DataLayout *DL) {
if (C.CandidateKind == Candidate::Add)
return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
if (C.CandidateKind == Candidate::GEP)
return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
return false;
}
// Returns true if GEP has zero or one non-zero index.
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
unsigned NumNonZeroIndices = 0;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
if (ConstIdx == nullptr || !ConstIdx->isZero())
++NumNonZeroIndices;
}
return NumNonZeroIndices <= 1;
}
bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
if (C.CandidateKind == Candidate::Add) {
// B + 1 * S or B + (-1) * S
return C.Index->isOne() || C.Index->isMinusOne();
}
if (C.CandidateKind == Candidate::Mul) {
// (B + 0) * S
return C.Index->isZero();
}
if (C.CandidateKind == Candidate::GEP) {
// (char*)B + S or (char*)B - S
return ((C.Index->isOne() || C.Index->isMinusOne()) &&
hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
}
return false;
}
// TODO: We currently implement an algorithm whose time complexity is linear in
// the number of existing candidates. However, we could do better by using
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
// maintain all the candidates that dominate the basic block being traversed in
// a ScopedHashTable. This hash table is indexed by the base and the stride of
// a candidate. Therefore, finding the immediate basis of a candidate boils down
// to one hash-table look up.
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If &B[Idx * S] fits into an addressing mode, do not turn it into
// non-free computation.
if (isCompletelyFoldable(GEP, TTI, DL))
return;
}
Candidate C(CT, B, Idx, S, I);
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running forever.
static const unsigned MaxNumIterations = 50;
for (auto Basis = Candidates.rbegin();
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
++Basis, ++NumIterations) {
if (isBasisFor(*Basis, C)) {
C.Basis = &(*Basis);
break;
// SLSR can complicate an instruction in two cases:
//
// 1. If we can fold I into an addressing mode, computing I is likely free or
// takes only one instruction.
//
// 2. I is already in a simplest form. For example, when
// X = B + 8 * S
// Y = B + S,
// rewriting Y to X - 7 * S is probably a bad idea.
//
// In the above cases, we still add I to the candidate list so that I can be
// the basis of other candidates, but we leave I's basis blank so that I
// won't be rewritten.
if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running in quadratice time.
static const unsigned MaxNumIterations = 50;
for (auto Basis = Candidates.rbegin();
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
++Basis, ++NumIterations) {
if (isBasisFor(*Basis, C)) {
C.Basis = &(*Basis);
break;
}
}
}
// Regardless of whether we find a basis for C, we need to push C to the
// candidate list.
// candidate list so that it can be the basis of other candidates.
Candidates.push_back(C);
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
allocateCandidatesAndFindBasisForAdd(I);
break;
case Instruction::Mul:
allocateCandidateAndFindBasisForMul(I);
allocateCandidatesAndFindBasisForMul(I);
break;
case Instruction::GetElementPtr:
allocateCandidateAndFindBasisForGEP(cast<GetElementPtrInst>(I));
allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
break;
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Instruction *I) {
// Try matching B + i * S.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I an add?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
if (LHS != RHS)
allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Value *LHS, Value *RHS, Instruction *I) {
Value *S = nullptr;
ConstantInt *Idx = nullptr;
if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + Idx * S
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
APInt One(Idx->getBitWidth(), 1);
Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else {
// At least, I = LHS + 1 * RHS
ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
I);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
@ -306,31 +411,32 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
// If LHS is in the form of "Base + Index", then I is in the form of
// "(Base + Index) * RHS".
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else {
// Otherwise, at least try the form (LHS + 0) * RHS.
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
I);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Instruction *I) {
// Try matching (B + i) * S.
// TODO: we could extend SLSR to float and vector types.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I a mul?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidateAndFindBasisForMul(LHS, RHS, I);
allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
if (LHS != RHS) {
// Symmetrically, try to split RHS to Base + Index.
allocateCandidateAndFindBasisForMul(RHS, LHS, I);
allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
Instruction *I) {
// I = B + sext(Idx *nsw S) * ElementSize
@ -340,15 +446,15 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
ConstantInt *ScaledIdx = ConstantInt::get(
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
const SCEV *Base,
uint64_t ElementSize,
GetElementPtrInst *GEP) {
// At least, ArrayIdx = ArrayIdx *s 1.
allocateCandidateAndFindBasisForGEP(
// At least, ArrayIdx = ArrayIdx *nsw 1.
allocateCandidatesAndFindBasisForGEP(
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
ArrayIdx, ElementSize, GEP);
Value *LHS = nullptr;
@ -367,18 +473,18 @@ void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
// SLSR is currently unsafe if i * S may overflow.
// GEP = Base + sext(LHS *nsw RHS) * ElementSize
allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
} else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
// GEP = Base + sext(LHS <<nsw RHS) * ElementSize
// = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
APInt One(RHS->getBitWidth(), 1);
ConstantInt *PowerOf2 =
ConstantInt::get(RHS->getContext(), One << RHS->getValue());
allocateCandidateAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
GetElementPtrInst *GEP) {
// TODO: handle vector GEPs
if (GEP->getType()->isVectorTy())
@ -442,6 +548,7 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
else
BumpWithUglyGEP = true;
}
// Compute Bump = C - Basis = (i' - i) * S.
// Common case 1: if (i' - i) is 1, Bump = S.
if (IndexOffset.getSExtValue() == 1)
@ -449,9 +556,24 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
// Common case 2: if (i' - i) is -1, Bump = -S.
if (IndexOffset.getSExtValue() == -1)
return Builder.CreateNeg(C.Stride);
// Otherwise, Bump = (i' - i) * sext/trunc(S).
ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset);
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType());
// Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
// have different bit widths.
IntegerType *DeltaType =
IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
if (IndexOffset.isPowerOf2()) {
// If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
return Builder.CreateShl(ExtendedStride, Exponent);
}
if ((-IndexOffset).isPowerOf2()) {
// If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
ConstantInt *Exponent =
ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
}
Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
return Builder.CreateMul(ExtendedStride, Delta);
}
@ -459,6 +581,9 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
C.Stride == Basis.Stride);
// We run rewriteCandidateWithBasis on all candidates in a post-order, so the
// basis of a candidate cannot be unlinked before the candidate.
assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
@ -472,8 +597,14 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
switch (C.CandidateKind) {
case Candidate::Add:
case Candidate::Mul:
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
if (BinaryOperator::isNeg(Bump)) {
Reduced =
Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
} else {
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
}
break;
case Candidate::GEP:
{
@ -510,7 +641,7 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
// Unlink C.Ins so that we can skip other candidates also corresponding to
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
C.Ins->removeFromParent();
UnlinkedInstructions.insert(C.Ins);
UnlinkedInstructions.push_back(C.Ins);
}
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
@ -525,7 +656,7 @@ bool StraightLineStrengthReduce::runOnFunction(Function &F) {
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
for (auto &I : *node->getBlock())
allocateCandidateAndFindBasis(&I);
allocateCandidatesAndFindBasis(&I);
}
// Rewrite candidates in the reverse depth-first order. This order makes sure

View File

@ -5,8 +5,8 @@ target triple = "x86_64-unknown-linux-gnu"
; Do not perform SLSR on &input[s] and &input[s * 2] which fit into addressing
; modes of X86.
define i32 @slsr_gep(i32* %input, i64 %s) {
; CHECK-LABEL: @slsr_gep(
define i32 @no_slsr_gep(i32* %input, i64 %s) {
; CHECK-LABEL: @no_slsr_gep(
; v0 = input[0];
%p0 = getelementptr inbounds i32, i32* %input, i64 0
%v0 = load i32, i32* %p0
@ -28,3 +28,17 @@ define i32 @slsr_gep(i32* %input, i64 %s) {
ret i32 %2
}
define void @no_slsr_add(i32 %b, i32 %s) {
; CHECK-LABEL: @no_slsr_add(
%1 = add i32 %b, %s
; CHECK: add i32 %b, %s
call void @foo(i32 %1)
%s2 = mul i32 %s, 2
; CHECK: %s2 = mul i32 %s, 2
%2 = add i32 %b, %s2
; CHECK: add i32 %b, %s2
call void @foo(i32 %2)
ret void
}
declare void @foo(i32 %a)

View File

@ -0,0 +1,101 @@
; RUN: opt < %s -slsr -gvn -dce -S | FileCheck %s
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
define void @shl(i32 %b, i32 %s) {
; CHECK-LABEL: @shl(
%1 = add i32 %b, %s
; [[BASIS:%[a-zA-Z0-9]+]] = add i32 %b, %s
call void @foo(i32 %1)
%s2 = shl i32 %s, 1
%2 = add i32 %b, %s2
; add i32 [[BASIS]], %s
call void @foo(i32 %2)
ret void
}
define void @stride_is_2s(i32 %b, i32 %s) {
; CHECK-LABEL: @stride_is_2s(
%s2 = shl i32 %s, 1
; CHECK: %s2 = shl i32 %s, 1
%1 = add i32 %b, %s2
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %b, %s2
call void @foo(i32 %1)
%s4 = shl i32 %s, 2
%2 = add i32 %b, %s4
; CHECK: [[t2:%[a-zA-Z0-9]+]] = add i32 [[t1]], %s2
call void @foo(i32 %2)
%s6 = mul i32 %s, 6
%3 = add i32 %b, %s6
; CHECK: add i32 [[t2]], %s2
call void @foo(i32 %3)
ret void
}
define void @stride_is_3s(i32 %b, i32 %s) {
; CHECK-LABEL: @stride_is_3s(
%1 = add i32 %s, %b
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %s, %b
call void @foo(i32 %1)
%s4 = shl i32 %s, 2
%2 = add i32 %s4, %b
; CHECK: [[bump:%[a-zA-Z0-9]+]] = mul i32 %s, 3
; CHECK: [[t2:%[a-zA-Z0-9]+]] = add i32 [[t1]], [[bump]]
call void @foo(i32 %2)
%s7 = mul i32 %s, 7
%3 = add i32 %s7, %b
; CHECK: add i32 [[t2]], [[bump]]
call void @foo(i32 %3)
ret void
}
; foo(b + 6 * s);
; foo(b + 4 * s);
; foo(b + 2 * s);
; =>
; t1 = b + 6 * s;
; foo(t1);
; s2 = 2 * s;
; t2 = t1 - s2;
; foo(t2);
; t3 = t2 - s2;
; foo(t3);
define void @stride_is_minus_2s(i32 %b, i32 %s) {
; CHECK-LABEL: @stride_is_minus_2s(
%s6 = mul i32 %s, 6
%1 = add i32 %b, %s6
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %b, %s6
; CHECK: call void @foo(i32 [[t1]])
call void @foo(i32 %1)
%s4 = shl i32 %s, 2
%2 = add i32 %b, %s4
; CHECK: [[bump:%[a-zA-Z0-9]+]] = shl i32 %s, 1
; CHECK: [[t2:%[a-zA-Z0-9]+]] = sub i32 [[t1]], [[bump]]
call void @foo(i32 %2)
; CHECK: call void @foo(i32 [[t2]])
%s2 = shl i32 %s, 1
%3 = add i32 %b, %s2
; CHECK: [[t3:%[a-zA-Z0-9]+]] = sub i32 [[t2]], [[bump]]
call void @foo(i32 %3)
; CHECK: call void @foo(i32 [[t3]])
ret void
}
; t = b + (s << 3);
; foo(t);
; foo(b + s);
;
; do not rewrite b + s to t - 7 * s because the latter is more complicated.
define void @simple_enough(i32 %b, i32 %s) {
; CHECK-LABEL: @simple_enough(
%s8 = shl i32 %s, 3
%1 = add i32 %b, %s8
call void @foo(i32 %1)
%2 = add i32 %b, %s
; CHECK: [[t:%[a-zA-Z0-9]+]] = add i32 %b, %s{{$}}
call void @foo(i32 %2)
; CHECK: call void @foo(i32 [[t]])
ret void
}
declare void @foo(i32 %a)

View File

@ -79,7 +79,7 @@ define i32 @slsr3(i32 %b, i32 %s) {
%b1 = add i32 %b, 2
%mul1 = mul i32 %b1, %s
; CHECK: [[BUMP:%[a-zA-Z0-9]+]] = mul i32 %s, 2
; CHECK: [[BUMP:%[a-zA-Z0-9]+]] = shl i32 %s, 1
; CHECK: %mul1 = add i32 %mul0, [[BUMP]]
%v1 = call i32 @foo(i32 %mul1)