Add a division operator to BlockFrequency.

Allow a BlockFrequency to be divided by a non-zero BranchProbability
with saturating arithmetic. This will be used to compute the frequency
of a loop header given the probability of leaving the loop.

Our long division algorithm already saturates on overflow, so that was a
freebie.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185184 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2013-06-28 18:23:42 +00:00
parent f52578c08c
commit d7648ff20f
3 changed files with 60 additions and 22 deletions

View File

@ -27,6 +27,9 @@ class BlockFrequency {
uint64_t Frequency;
static const int64_t ENTRY_FREQ = 1 << 14;
// Scale frequency by N/D, saturating on overflow.
void scale(uint32_t N, uint32_t D);
public:
BlockFrequency(uint64_t Freq = 0) : Frequency(Freq) { }
@ -42,6 +45,11 @@ public:
BlockFrequency &operator*=(const BranchProbability &Prob);
const BlockFrequency operator*(const BranchProbability &Prob) const;
/// \brief Divide by a non-zero branch probability using saturating
/// arithmetic.
BlockFrequency &operator/=(const BranchProbability &Prob);
BlockFrequency operator/(const BranchProbability &Prob) const;
/// \brief Adds another block frequency using saturating arithmetic.
BlockFrequency &operator+=(const BlockFrequency &Freq);
const BlockFrequency operator+(const BlockFrequency &Freq) const;

View File

@ -42,12 +42,14 @@ void mult96bit(uint64_t freq, uint32_t N, uint64_t W[2]) {
}
/// div96bit - Divide 96-bit value stored in W array by D. Return 64-bit frequency.
/// div96bit - Divide 96-bit value stored in W array by D.
/// Return 64-bit quotient, saturated to UINT64_MAX on overflow.
uint64_t div96bit(uint64_t W[2], uint32_t D) {
uint64_t y = W[0];
uint64_t x = W[1];
int i;
// This long division algorithm automatically saturates on overflow.
for (i = 1; i <= 64 && x; ++i) {
uint32_t t = (int)x >> 31;
x = (x << 1) | (y >> 63);
@ -63,31 +65,30 @@ uint64_t div96bit(uint64_t W[2], uint32_t D) {
}
void BlockFrequency::scale(uint32_t N, uint32_t D) {
assert(D != 0 && "Division by zero");
BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
uint32_t n = Prob.getNumerator();
uint32_t d = Prob.getDenominator();
// Calculate Frequency * N.
uint64_t MulLo = (Frequency & UINT32_MAX) * N;
uint64_t MulHi = (Frequency >> 32) * N;
uint64_t MulRes = (MulHi << 32) + MulLo;
assert(n <= d && "Probability must be less or equal to 1.");
// Calculate Frequency * n.
uint64_t mulLo = (Frequency & UINT32_MAX) * n;
uint64_t mulHi = (Frequency >> 32) * n;
uint64_t mulRes = (mulHi << 32) + mulLo;
// If there was overflow use 96-bit operations.
if (mulHi > UINT32_MAX || mulRes < mulLo) {
// 96-bit value represented as W[1]:W[0].
uint64_t W[2];
// Probability is less or equal to 1 which means that results must fit
// 64-bit.
mult96bit(Frequency, n, W);
Frequency = div96bit(W, d);
return *this;
// If the product fits in 64 bits, just use built-in division.
if (MulHi <= UINT32_MAX && MulRes <= MulLo) {
Frequency = MulRes / D;
return;
}
Frequency = mulRes / d;
// Product overflowed, use 96-bit operations.
// 96-bit value represented as W[1]:W[0].
uint64_t W[2];
mult96bit(Frequency, N, W);
Frequency = div96bit(W, D);
return;
}
BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
scale(Prob.getNumerator(), Prob.getDenominator());
return *this;
}
@ -98,6 +99,17 @@ BlockFrequency::operator*(const BranchProbability &Prob) const {
return Freq;
}
BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
scale(Prob.getDenominator(), Prob.getNumerator());
return *this;
}
BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
BlockFrequency Freq(Frequency);
Freq /= Prob;
return Freq;
}
BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
uint64_t Before = Freq.Frequency;
Frequency += Freq.Frequency;

View File

@ -52,6 +52,24 @@ TEST(BlockFrequencyTest, MaxToMax) {
EXPECT_EQ(Freq.getFrequency(), UINT64_MAX);
}
TEST(BlockFrequency, Divide) {
BlockFrequency Freq(0x3333333333333333ULL);
Freq /= BranchProbability(1, 2);
EXPECT_EQ(Freq.getFrequency(), 0x6666666666666666ULL);
}
TEST(BlockFrequencyTest, Saturate) {
BlockFrequency Freq(0x3333333333333333ULL);
Freq /= BranchProbability(100, 300);
EXPECT_EQ(Freq.getFrequency(), 0x9999999999999999ULL);
Freq /= BranchProbability(1, 2);
EXPECT_EQ(Freq.getFrequency(), UINT64_MAX);
Freq = 0x1000000000000000ULL;
Freq /= BranchProbability(10000, 160000);
EXPECT_EQ(Freq.getFrequency(), UINT64_MAX);
}
TEST(BlockFrequencyTest, ProbabilityCompare) {
BranchProbability A(4, 5);
BranchProbability B(4U << 29, 5U << 29);