[tsan] Atomic support for ThreadSanitizer, patch by Dmitry Vyukov

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155698 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Kostya Serebryany 2012-04-27 07:31:53 +00:00
parent 76c5897eae
commit e507922779
2 changed files with 475 additions and 33 deletions

View File

@ -39,6 +39,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Type.h"
@ -62,26 +63,32 @@ namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer();
const char *getPassName() const;
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
bool instrumentLoadOrStore(Instruction *I);
static char ID; // Pass identification, replacement for typeid.
private:
bool instrumentLoadOrStore(Instruction *I);
bool instrumentAtomic(Instruction *I);
void choseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
SmallVectorImpl<Instruction*> &All);
bool addrPointsToConstantData(Value *Addr);
int getMemoryAccessFuncIndex(Value *Addr);
TargetData *TD;
OwningPtr<FunctionBlackList> BL;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
Value *TsanFuncEntry;
Value *TsanFuncExit;
Function *TsanFuncEntry;
Function *TsanFuncExit;
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
Value *TsanRead[kNumberOfAccessSizes];
Value *TsanWrite[kNumberOfAccessSizes];
Value *TsanVptrUpdate;
Function *TsanRead[kNumberOfAccessSizes];
Function *TsanWrite[kNumberOfAccessSizes];
Function *TsanAtomicLoad[kNumberOfAccessSizes];
Function *TsanAtomicStore[kNumberOfAccessSizes];
Function *TsanVptrUpdate;
};
} // namespace
@ -90,6 +97,10 @@ INITIALIZE_PASS(ThreadSanitizer, "tsan",
"ThreadSanitizer: detects data races.",
false, false)
const char *ThreadSanitizer::getPassName() const {
return "ThreadSanitizer";
}
ThreadSanitizer::ThreadSanitizer()
: FunctionPass(ID),
TD(NULL) {
@ -99,6 +110,13 @@ FunctionPass *llvm::createThreadSanitizerPass() {
return new ThreadSanitizer();
}
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
if (Function *F = dyn_cast<Function>(FuncOrBitcast))
return F;
FuncOrBitcast->dump();
report_fatal_error("ThreadSanitizer interface function redefined");
}
bool ThreadSanitizer::doInitialization(Module &M) {
TD = getAnalysisIfAvailable<TargetData>();
if (!TD)
@ -112,23 +130,38 @@ bool ThreadSanitizer::doInitialization(Module &M) {
appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
// Initialize the callbacks.
TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", IRB.getVoidTy(),
IRB.getInt8PtrTy(), NULL);
TsanFuncExit = M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(),
NULL);
TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_exit", IRB.getVoidTy(), NULL));
OrdTy = IRB.getInt32Ty();
for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
SmallString<32> ReadName("__tsan_read");
ReadName += itostr(1 << i);
TsanRead[i] = M.getOrInsertFunction(ReadName, IRB.getVoidTy(),
IRB.getInt8PtrTy(), NULL);
SmallString<32> WriteName("__tsan_write");
WriteName += itostr(1 << i);
TsanWrite[i] = M.getOrInsertFunction(WriteName, IRB.getVoidTy(),
IRB.getInt8PtrTy(), NULL);
const size_t ByteSize = 1 << i;
const size_t BitSize = ByteSize * 8;
SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
"_load");
TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
"_store");
TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
NULL));
}
TsanVptrUpdate = M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
NULL);
TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), NULL));
return true;
}
@ -202,12 +235,27 @@ void ThreadSanitizer::choseInstructionsToInstrument(
Local.clear();
}
static bool isAtomic(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isAtomic() && LI->getSynchScope() == CrossThread;
else if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isAtomic() && SI->getSynchScope() == CrossThread;
else if (isa<AtomicRMWInst>(I))
return true;
else if (isa<AtomicCmpXchgInst>(I))
return true;
else if (FenceInst *FI = dyn_cast<FenceInst>(I))
return FI->getSynchScope() == CrossThread;
return false;
}
bool ThreadSanitizer::runOnFunction(Function &F) {
if (!TD) return false;
if (BL->isIn(F)) return false;
SmallVector<Instruction*, 8> RetVec;
SmallVector<Instruction*, 8> AllLoadsAndStores;
SmallVector<Instruction*, 8> LocalLoadsAndStores;
SmallVector<Instruction*, 8> AtomicAccesses;
bool Res = false;
bool HasCalls = false;
@ -217,7 +265,9 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
BasicBlock &BB = *FI;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
BI != BE; ++BI) {
if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
if (isAtomic(BI))
AtomicAccesses.push_back(BI);
else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
LocalLoadsAndStores.push_back(BI);
else if (isa<ReturnInst>(BI))
RetVec.push_back(BI);
@ -238,6 +288,11 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
}
// Instrument atomic memory accesses.
for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
Res |= instrumentAtomic(AtomicAccesses[i]);
}
// Instrument function entry/exit points if there were instrumented accesses.
if (Res || HasCalls) {
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
@ -260,16 +315,9 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
Value *Addr = IsWrite
? cast<StoreInst>(I)->getPointerOperand()
: cast<LoadInst>(I)->getPointerOperand();
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
if (TypeSize != 8 && TypeSize != 16 &&
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
NumAccessesWithBadSize++;
// Ignore all unusual sizes.
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
}
if (IsWrite && isVtableAccess(I)) {
Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
IRB.CreateCall2(TsanVptrUpdate,
@ -278,11 +326,82 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
NumInstrumentedVtableWrites++;
return true;
}
size_t Idx = CountTrailingZeros_32(TypeSize / 8);
assert(Idx < kNumberOfAccessSizes);
Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
if (IsWrite) NumInstrumentedWrites++;
else NumInstrumentedReads++;
return true;
}
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
uint32_t v = 0;
switch (ord) {
case NotAtomic: assert(false);
case Unordered: // Fall-through.
case Monotonic: v = 1 << 0; break;
// case Consume: v = 1 << 1; break; // Not specified yet.
case Acquire: v = 1 << 2; break;
case Release: v = 1 << 3; break;
case AcquireRelease: v = 1 << 4; break;
case SequentiallyConsistent: v = 1 << 5; break;
}
return IRB->getInt32(v);
}
bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
IRBuilder<> IRB(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Value *Addr = LI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
createOrdering(&IRB, LI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Addr = SI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
createOrdering(&IRB, SI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (isa<AtomicRMWInst>(I)) {
// FIXME: Not yet supported.
} else if (isa<AtomicCmpXchgInst>(I)) {
// FIXME: Not yet supported.
} else if (isa<FenceInst>(I)) {
// FIXME: Not yet supported.
}
return true;
}
int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
if (TypeSize != 8 && TypeSize != 16 &&
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
NumAccessesWithBadSize++;
// Ignore all unusual sizes.
return -1;
}
size_t Idx = CountTrailingZeros_32(TypeSize / 8);
assert(Idx < kNumberOfAccessSizes);
return Idx;
}

View File

@ -0,0 +1,323 @@
; RUN: opt < %s -tsan -S | FileCheck %s
; Check that atomic memory operations are converted to calls into ThreadSanitizer runtime.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
define i8 @atomic8_load_unordered(i8* %a) nounwind uwtable {
entry:
%0 = load atomic i8* %a unordered, align 1
ret i8 %0
}
; CHECK: atomic8_load_unordered
; CHECK: call i8 @__tsan_atomic8_load(i8* %a, i32 1)
define i8 @atomic8_load_monotonic(i8* %a) nounwind uwtable {
entry:
%0 = load atomic i8* %a monotonic, align 1
ret i8 %0
}
; CHECK: atomic8_load_monotonic
; CHECK: call i8 @__tsan_atomic8_load(i8* %a, i32 1)
define i8 @atomic8_load_acquire(i8* %a) nounwind uwtable {
entry:
%0 = load atomic i8* %a acquire, align 1
ret i8 %0
}
; CHECK: atomic8_load_acquire
; CHECK: call i8 @__tsan_atomic8_load(i8* %a, i32 4)
define i8 @atomic8_load_seq_cst(i8* %a) nounwind uwtable {
entry:
%0 = load atomic i8* %a seq_cst, align 1
ret i8 %0
}
; CHECK: atomic8_load_seq_cst
; CHECK: call i8 @__tsan_atomic8_load(i8* %a, i32 32)
define void @atomic8_store_unordered(i8* %a) nounwind uwtable {
entry:
store atomic i8 0, i8* %a unordered, align 1
ret void
}
; CHECK: atomic8_store_unordered
; CHECK: call void @__tsan_atomic8_store(i8* %a, i8 0, i32 1)
define void @atomic8_store_monotonic(i8* %a) nounwind uwtable {
entry:
store atomic i8 0, i8* %a monotonic, align 1
ret void
}
; CHECK: atomic8_store_monotonic
; CHECK: call void @__tsan_atomic8_store(i8* %a, i8 0, i32 1)
define void @atomic8_store_release(i8* %a) nounwind uwtable {
entry:
store atomic i8 0, i8* %a release, align 1
ret void
}
; CHECK: atomic8_store_release
; CHECK: call void @__tsan_atomic8_store(i8* %a, i8 0, i32 8)
define void @atomic8_store_seq_cst(i8* %a) nounwind uwtable {
entry:
store atomic i8 0, i8* %a seq_cst, align 1
ret void
}
; CHECK: atomic8_store_seq_cst
; CHECK: call void @__tsan_atomic8_store(i8* %a, i8 0, i32 32)
define i16 @atomic16_load_unordered(i16* %a) nounwind uwtable {
entry:
%0 = load atomic i16* %a unordered, align 2
ret i16 %0
}
; CHECK: atomic16_load_unordered
; CHECK: call i16 @__tsan_atomic16_load(i16* %a, i32 1)
define i16 @atomic16_load_monotonic(i16* %a) nounwind uwtable {
entry:
%0 = load atomic i16* %a monotonic, align 2
ret i16 %0
}
; CHECK: atomic16_load_monotonic
; CHECK: call i16 @__tsan_atomic16_load(i16* %a, i32 1)
define i16 @atomic16_load_acquire(i16* %a) nounwind uwtable {
entry:
%0 = load atomic i16* %a acquire, align 2
ret i16 %0
}
; CHECK: atomic16_load_acquire
; CHECK: call i16 @__tsan_atomic16_load(i16* %a, i32 4)
define i16 @atomic16_load_seq_cst(i16* %a) nounwind uwtable {
entry:
%0 = load atomic i16* %a seq_cst, align 2
ret i16 %0
}
; CHECK: atomic16_load_seq_cst
; CHECK: call i16 @__tsan_atomic16_load(i16* %a, i32 32)
define void @atomic16_store_unordered(i16* %a) nounwind uwtable {
entry:
store atomic i16 0, i16* %a unordered, align 2
ret void
}
; CHECK: atomic16_store_unordered
; CHECK: call void @__tsan_atomic16_store(i16* %a, i16 0, i32 1)
define void @atomic16_store_monotonic(i16* %a) nounwind uwtable {
entry:
store atomic i16 0, i16* %a monotonic, align 2
ret void
}
; CHECK: atomic16_store_monotonic
; CHECK: call void @__tsan_atomic16_store(i16* %a, i16 0, i32 1)
define void @atomic16_store_release(i16* %a) nounwind uwtable {
entry:
store atomic i16 0, i16* %a release, align 2
ret void
}
; CHECK: atomic16_store_release
; CHECK: call void @__tsan_atomic16_store(i16* %a, i16 0, i32 8)
define void @atomic16_store_seq_cst(i16* %a) nounwind uwtable {
entry:
store atomic i16 0, i16* %a seq_cst, align 2
ret void
}
; CHECK: atomic16_store_seq_cst
; CHECK: call void @__tsan_atomic16_store(i16* %a, i16 0, i32 32)
define i32 @atomic32_load_unordered(i32* %a) nounwind uwtable {
entry:
%0 = load atomic i32* %a unordered, align 4
ret i32 %0
}
; CHECK: atomic32_load_unordered
; CHECK: call i32 @__tsan_atomic32_load(i32* %a, i32 1)
define i32 @atomic32_load_monotonic(i32* %a) nounwind uwtable {
entry:
%0 = load atomic i32* %a monotonic, align 4
ret i32 %0
}
; CHECK: atomic32_load_monotonic
; CHECK: call i32 @__tsan_atomic32_load(i32* %a, i32 1)
define i32 @atomic32_load_acquire(i32* %a) nounwind uwtable {
entry:
%0 = load atomic i32* %a acquire, align 4
ret i32 %0
}
; CHECK: atomic32_load_acquire
; CHECK: call i32 @__tsan_atomic32_load(i32* %a, i32 4)
define i32 @atomic32_load_seq_cst(i32* %a) nounwind uwtable {
entry:
%0 = load atomic i32* %a seq_cst, align 4
ret i32 %0
}
; CHECK: atomic32_load_seq_cst
; CHECK: call i32 @__tsan_atomic32_load(i32* %a, i32 32)
define void @atomic32_store_unordered(i32* %a) nounwind uwtable {
entry:
store atomic i32 0, i32* %a unordered, align 4
ret void
}
; CHECK: atomic32_store_unordered
; CHECK: call void @__tsan_atomic32_store(i32* %a, i32 0, i32 1)
define void @atomic32_store_monotonic(i32* %a) nounwind uwtable {
entry:
store atomic i32 0, i32* %a monotonic, align 4
ret void
}
; CHECK: atomic32_store_monotonic
; CHECK: call void @__tsan_atomic32_store(i32* %a, i32 0, i32 1)
define void @atomic32_store_release(i32* %a) nounwind uwtable {
entry:
store atomic i32 0, i32* %a release, align 4
ret void
}
; CHECK: atomic32_store_release
; CHECK: call void @__tsan_atomic32_store(i32* %a, i32 0, i32 8)
define void @atomic32_store_seq_cst(i32* %a) nounwind uwtable {
entry:
store atomic i32 0, i32* %a seq_cst, align 4
ret void
}
; CHECK: atomic32_store_seq_cst
; CHECK: call void @__tsan_atomic32_store(i32* %a, i32 0, i32 32)
define i64 @atomic64_load_unordered(i64* %a) nounwind uwtable {
entry:
%0 = load atomic i64* %a unordered, align 8
ret i64 %0
}
; CHECK: atomic64_load_unordered
; CHECK: call i64 @__tsan_atomic64_load(i64* %a, i32 1)
define i64 @atomic64_load_monotonic(i64* %a) nounwind uwtable {
entry:
%0 = load atomic i64* %a monotonic, align 8
ret i64 %0
}
; CHECK: atomic64_load_monotonic
; CHECK: call i64 @__tsan_atomic64_load(i64* %a, i32 1)
define i64 @atomic64_load_acquire(i64* %a) nounwind uwtable {
entry:
%0 = load atomic i64* %a acquire, align 8
ret i64 %0
}
; CHECK: atomic64_load_acquire
; CHECK: call i64 @__tsan_atomic64_load(i64* %a, i32 4)
define i64 @atomic64_load_seq_cst(i64* %a) nounwind uwtable {
entry:
%0 = load atomic i64* %a seq_cst, align 8
ret i64 %0
}
; CHECK: atomic64_load_seq_cst
; CHECK: call i64 @__tsan_atomic64_load(i64* %a, i32 32)
define void @atomic64_store_unordered(i64* %a) nounwind uwtable {
entry:
store atomic i64 0, i64* %a unordered, align 8
ret void
}
; CHECK: atomic64_store_unordered
; CHECK: call void @__tsan_atomic64_store(i64* %a, i64 0, i32 1)
define void @atomic64_store_monotonic(i64* %a) nounwind uwtable {
entry:
store atomic i64 0, i64* %a monotonic, align 8
ret void
}
; CHECK: atomic64_store_monotonic
; CHECK: call void @__tsan_atomic64_store(i64* %a, i64 0, i32 1)
define void @atomic64_store_release(i64* %a) nounwind uwtable {
entry:
store atomic i64 0, i64* %a release, align 8
ret void
}
; CHECK: atomic64_store_release
; CHECK: call void @__tsan_atomic64_store(i64* %a, i64 0, i32 8)
define void @atomic64_store_seq_cst(i64* %a) nounwind uwtable {
entry:
store atomic i64 0, i64* %a seq_cst, align 8
ret void
}
; CHECK: atomic64_store_seq_cst
; CHECK: call void @__tsan_atomic64_store(i64* %a, i64 0, i32 32)
define i128 @atomic128_load_unordered(i128* %a) nounwind uwtable {
entry:
%0 = load atomic i128* %a unordered, align 16
ret i128 %0
}
; CHECK: atomic128_load_unordered
; CHECK: call i128 @__tsan_atomic128_load(i128* %a, i32 1)
define i128 @atomic128_load_monotonic(i128* %a) nounwind uwtable {
entry:
%0 = load atomic i128* %a monotonic, align 16
ret i128 %0
}
; CHECK: atomic128_load_monotonic
; CHECK: call i128 @__tsan_atomic128_load(i128* %a, i32 1)
define i128 @atomic128_load_acquire(i128* %a) nounwind uwtable {
entry:
%0 = load atomic i128* %a acquire, align 16
ret i128 %0
}
; CHECK: atomic128_load_acquire
; CHECK: call i128 @__tsan_atomic128_load(i128* %a, i32 4)
define i128 @atomic128_load_seq_cst(i128* %a) nounwind uwtable {
entry:
%0 = load atomic i128* %a seq_cst, align 16
ret i128 %0
}
; CHECK: atomic128_load_seq_cst
; CHECK: call i128 @__tsan_atomic128_load(i128* %a, i32 32)
define void @atomic128_store_unordered(i128* %a) nounwind uwtable {
entry:
store atomic i128 0, i128* %a unordered, align 16
ret void
}
; CHECK: atomic128_store_unordered
; CHECK: call void @__tsan_atomic128_store(i128* %a, i128 0, i32 1)
define void @atomic128_store_monotonic(i128* %a) nounwind uwtable {
entry:
store atomic i128 0, i128* %a monotonic, align 16
ret void
}
; CHECK: atomic128_store_monotonic
; CHECK: call void @__tsan_atomic128_store(i128* %a, i128 0, i32 1)
define void @atomic128_store_release(i128* %a) nounwind uwtable {
entry:
store atomic i128 0, i128* %a release, align 16
ret void
}
; CHECK: atomic128_store_release
; CHECK: call void @__tsan_atomic128_store(i128* %a, i128 0, i32 8)
define void @atomic128_store_seq_cst(i128* %a) nounwind uwtable {
entry:
store atomic i128 0, i128* %a seq_cst, align 16
ret void
}
; CHECK: atomic128_store_seq_cst
; CHECK: call void @__tsan_atomic128_store(i128* %a, i128 0, i32 32)