mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-12 03:32:10 +00:00
VLIW specific scheduler framework that utilizes deterministic finite automaton (DFA).
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling. Patch by Sergei Larin! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149547 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f18a9a2314
commit
ee498d3254
@ -40,12 +40,13 @@ namespace {
|
||||
|
||||
llvm::linkOcamlGC();
|
||||
llvm::linkShadowStackGC();
|
||||
|
||||
|
||||
(void) llvm::createBURRListDAGScheduler(NULL, llvm::CodeGenOpt::Default);
|
||||
(void) llvm::createSourceListDAGScheduler(NULL,llvm::CodeGenOpt::Default);
|
||||
(void) llvm::createHybridListDAGScheduler(NULL,llvm::CodeGenOpt::Default);
|
||||
(void) llvm::createFastDAGScheduler(NULL, llvm::CodeGenOpt::Default);
|
||||
(void) llvm::createDefaultScheduler(NULL, llvm::CodeGenOpt::Default);
|
||||
(void) llvm::createVLIWDAGScheduler(NULL, llvm::CodeGenOpt::Default);
|
||||
|
||||
}
|
||||
} ForceCodegenLinking; // Force link by creating a global definition.
|
||||
|
142
include/llvm/CodeGen/ResourcePriorityQueue.h
Normal file
142
include/llvm/CodeGen/ResourcePriorityQueue.h
Normal file
@ -0,0 +1,142 @@
|
||||
//===----- ResourcePriorityQueue.h - A DFA-oriented priority queue -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the ResourcePriorityQueue class, which is a
|
||||
// SchedulingPriorityQueue that schedules using DFA state to
|
||||
// reduce the length of the critical path through the basic block
|
||||
// on VLIW platforms.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef RESOURCE_PRIORITY_QUEUE_H
|
||||
#define RESOURCE_PRIORITY_QUEUE_H
|
||||
|
||||
#include "llvm/CodeGen/DFAPacketizer.h"
|
||||
#include "llvm/CodeGen/SelectionDAGISel.h"
|
||||
#include "llvm/CodeGen/ScheduleDAG.h"
|
||||
#include "llvm/MC/MCInstrItineraries.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
|
||||
namespace llvm {
|
||||
class ResourcePriorityQueue;
|
||||
|
||||
/// Sorting functions for the Available queue.
|
||||
struct resource_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
||||
ResourcePriorityQueue *PQ;
|
||||
explicit resource_sort(ResourcePriorityQueue *pq) : PQ(pq) {}
|
||||
|
||||
bool operator()(const SUnit* left, const SUnit* right) const;
|
||||
};
|
||||
|
||||
class ResourcePriorityQueue : public SchedulingPriorityQueue {
|
||||
/// SUnits - The SUnits for the current graph.
|
||||
std::vector<SUnit> *SUnits;
|
||||
|
||||
/// NumNodesSolelyBlocking - This vector contains, for every node in the
|
||||
/// Queue, the number of nodes that the node is the sole unscheduled
|
||||
/// predecessor for. This is used as a tie-breaker heuristic for better
|
||||
/// mobility.
|
||||
std::vector<unsigned> NumNodesSolelyBlocking;
|
||||
|
||||
/// Queue - The queue.
|
||||
std::vector<SUnit*> Queue;
|
||||
|
||||
/// RegPressure - Tracking current reg pressure per register class.
|
||||
///
|
||||
std::vector<unsigned> RegPressure;
|
||||
|
||||
/// RegLimit - Tracking the number of allocatable registers per register
|
||||
/// class.
|
||||
std::vector<unsigned> RegLimit;
|
||||
|
||||
resource_sort Picker;
|
||||
const TargetRegisterInfo *TRI;
|
||||
const TargetLowering *TLI;
|
||||
const TargetInstrInfo *TII;
|
||||
const InstrItineraryData* InstrItins;
|
||||
/// ResourcesModel - Represents VLIW state.
|
||||
/// Not limited to VLIW targets per say, but assumes
|
||||
/// definition of DFA by a target.
|
||||
DFAPacketizer *ResourcesModel;
|
||||
|
||||
/// Resource model - packet/bundle model. Purely
|
||||
/// internal at the time.
|
||||
std::vector<SUnit*> Packet;
|
||||
|
||||
/// Heuristics for estimating register pressure.
|
||||
unsigned ParallelLiveRanges;
|
||||
signed HorizontalVerticalBalance;
|
||||
|
||||
public:
|
||||
ResourcePriorityQueue(SelectionDAGISel *IS);
|
||||
|
||||
~ResourcePriorityQueue() {
|
||||
delete ResourcesModel;
|
||||
}
|
||||
|
||||
bool isBottomUp() const { return false; }
|
||||
|
||||
void initNodes(std::vector<SUnit> &sunits);
|
||||
|
||||
void addNode(const SUnit *SU) {
|
||||
NumNodesSolelyBlocking.resize(SUnits->size(), 0);
|
||||
}
|
||||
|
||||
void updateNode(const SUnit *SU) {}
|
||||
|
||||
void releaseState() {
|
||||
SUnits = 0;
|
||||
}
|
||||
|
||||
unsigned getLatency(unsigned NodeNum) const {
|
||||
assert(NodeNum < (*SUnits).size());
|
||||
return (*SUnits)[NodeNum].getHeight();
|
||||
}
|
||||
|
||||
unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
|
||||
assert(NodeNum < NumNodesSolelyBlocking.size());
|
||||
return NumNodesSolelyBlocking[NodeNum];
|
||||
}
|
||||
|
||||
/// Single cost function reflecting benefit of scheduling SU
|
||||
/// in the current cycle.
|
||||
signed SUSchedulingCost (SUnit *SU);
|
||||
|
||||
/// InitNumRegDefsLeft - Determine the # of regs defined by this node.
|
||||
///
|
||||
void initNumRegDefsLeft(SUnit *SU);
|
||||
void updateNumRegDefsLeft(SUnit *SU);
|
||||
signed regPressureDelta(SUnit *SU, bool RawPressure = false);
|
||||
signed rawRegPressureDelta (SUnit *SU, unsigned RCId);
|
||||
|
||||
bool empty() const { return Queue.empty(); }
|
||||
|
||||
virtual void push(SUnit *U);
|
||||
|
||||
virtual SUnit *pop();
|
||||
|
||||
virtual void remove(SUnit *SU);
|
||||
|
||||
virtual void dump(ScheduleDAG* DAG) const;
|
||||
|
||||
/// ScheduledNode - Main resource tracking point.
|
||||
void ScheduledNode(SUnit *Node);
|
||||
bool isResourceAvailable(SUnit *SU);
|
||||
void reserveResources(SUnit *SU);
|
||||
|
||||
private:
|
||||
void adjustPriorityOfUnscheduledPreds(SUnit *SU);
|
||||
SUnit *getSingleUnscheduledPred(SUnit *SU);
|
||||
unsigned numberRCValPredInSU (SUnit *SU, unsigned RCId);
|
||||
unsigned numberRCValSuccInSU (SUnit *SU, unsigned RCId);
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@ -42,7 +42,7 @@ public:
|
||||
: MachinePassRegistryNode(N, D, (MachinePassCtor)C)
|
||||
{ Registry.Add(this); }
|
||||
~RegisterScheduler() { Registry.Remove(this); }
|
||||
|
||||
|
||||
|
||||
// Accessors.
|
||||
//
|
||||
@ -92,6 +92,11 @@ ScheduleDAGSDNodes *createILPListDAGScheduler(SelectionDAGISel *IS,
|
||||
ScheduleDAGSDNodes *createFastDAGScheduler(SelectionDAGISel *IS,
|
||||
CodeGenOpt::Level OptLevel);
|
||||
|
||||
/// createVLIWDAGScheduler - Scheduler for VLIW targets. This creates top down
|
||||
/// DFA driven list scheduler with clustering heuristic to control
|
||||
/// register pressure.
|
||||
ScheduleDAGSDNodes *createVLIWDAGScheduler(SelectionDAGISel *IS,
|
||||
CodeGenOpt::Level OptLevel);
|
||||
/// createDefaultScheduler - This creates an instruction scheduler appropriate
|
||||
/// for the target.
|
||||
ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS,
|
||||
|
@ -15,6 +15,7 @@
|
||||
#define LLVM_TARGET_TARGETINSTRINFO_H
|
||||
|
||||
#include "llvm/MC/MCInstrInfo.h"
|
||||
#include "llvm/CodeGen/DFAPacketizer.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
|
||||
namespace llvm {
|
||||
@ -811,6 +812,12 @@ public:
|
||||
breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
|
||||
const TargetRegisterInfo *TRI) const {}
|
||||
|
||||
/// Create machine specific model for scheduling.
|
||||
virtual DFAPacketizer*
|
||||
CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
private:
|
||||
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
|
||||
};
|
||||
|
@ -59,7 +59,8 @@ namespace llvm {
|
||||
Source, // Follow source order.
|
||||
RegPressure, // Scheduling for lowest register pressure.
|
||||
Hybrid, // Scheduling for both latency and register pressure.
|
||||
ILP // Scheduling for ILP in low register pressure mode.
|
||||
ILP, // Scheduling for ILP in low register pressure mode.
|
||||
VLIW // Scheduling for VLIW targets.
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -10,13 +10,15 @@ add_llvm_library(LLVMSelectionDAG
|
||||
LegalizeTypesGeneric.cpp
|
||||
LegalizeVectorOps.cpp
|
||||
LegalizeVectorTypes.cpp
|
||||
ResourcePriorityQueue.cpp
|
||||
ScheduleDAGFast.cpp
|
||||
ScheduleDAGRRList.cpp
|
||||
ScheduleDAGRRList.cpp
|
||||
ScheduleDAGSDNodes.cpp
|
||||
SelectionDAG.cpp
|
||||
SelectionDAGBuilder.cpp
|
||||
SelectionDAGISel.cpp
|
||||
SelectionDAGPrinter.cpp
|
||||
SelectionDAGVLIW.cpp
|
||||
TargetLowering.cpp
|
||||
TargetSelectionDAGInfo.cpp
|
||||
)
|
||||
|
657
lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
Normal file
657
lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
Normal file
@ -0,0 +1,657 @@
|
||||
//===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the ResourcePriorityQueue class, which is a
|
||||
// SchedulingPriorityQueue that prioritizes instructions using DFA state to
|
||||
// reduce the length of the critical path through the basic block
|
||||
// on VLIW platforms.
|
||||
// The scheduler is basically a top-down adaptable list scheduler with DFA
|
||||
// resource tracking added to the cost function.
|
||||
// DFA is queried as a state machine to model "packets/bundles" during
|
||||
// schedule. Currently packets/bundles are discarded at the end of
|
||||
// scheduling, affecting only order of instructions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "scheduler"
|
||||
#include "llvm/CodeGen/ResourcePriorityQueue.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static cl::opt<bool> DisableDFASched("disable-dfa-sched", cl::Hidden,
|
||||
cl::ZeroOrMore, cl::init(false),
|
||||
cl::desc("Disable use of DFA during scheduling"));
|
||||
|
||||
static cl::opt<signed> RegPressureThreshold(
|
||||
"dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5),
|
||||
cl::desc("Track reg pressure and switch priority to in-depth"));
|
||||
|
||||
|
||||
ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) :
|
||||
Picker(this),
|
||||
InstrItins(IS->getTargetLowering().getTargetMachine().getInstrItineraryData())
|
||||
{
|
||||
TII = IS->getTargetLowering().getTargetMachine().getInstrInfo();
|
||||
TRI = IS->getTargetLowering().getTargetMachine().getRegisterInfo();
|
||||
TLI = &IS->getTargetLowering();
|
||||
|
||||
const TargetMachine &tm = (*IS->MF).getTarget();
|
||||
ResourcesModel = tm.getInstrInfo()->CreateTargetScheduleState(&tm,NULL);
|
||||
// This hard requirment could be relaxed, but for now
|
||||
// do not let it procede.
|
||||
assert (ResourcesModel && "Unimplemented CreateTargetScheduleState.");
|
||||
|
||||
unsigned NumRC = TRI->getNumRegClasses();
|
||||
RegLimit.resize(NumRC);
|
||||
RegPressure.resize(NumRC);
|
||||
std::fill(RegLimit.begin(), RegLimit.end(), 0);
|
||||
std::fill(RegPressure.begin(), RegPressure.end(), 0);
|
||||
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
||||
E = TRI->regclass_end(); I != E; ++I)
|
||||
RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF);
|
||||
|
||||
ParallelLiveRanges = 0;
|
||||
HorizontalVerticalBalance = 0;
|
||||
}
|
||||
|
||||
unsigned
|
||||
ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) {
|
||||
unsigned NumberDeps = 0;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl())
|
||||
continue;
|
||||
|
||||
SUnit *PredSU = I->getSUnit();
|
||||
const SDNode *ScegN = PredSU->getNode();
|
||||
|
||||
if (!ScegN)
|
||||
continue;
|
||||
|
||||
// If value is passed to CopyToReg, it is probably
|
||||
// live outside BB.
|
||||
switch (ScegN->getOpcode()) {
|
||||
default: break;
|
||||
case ISD::TokenFactor: break;
|
||||
case ISD::CopyFromReg: NumberDeps++; break;
|
||||
case ISD::CopyToReg: break;
|
||||
case ISD::INLINEASM: break;
|
||||
}
|
||||
if (!ScegN->isMachineOpcode())
|
||||
continue;
|
||||
|
||||
for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
|
||||
EVT VT = ScegN->getValueType(i);
|
||||
if (TLI->isTypeLegal(VT)
|
||||
&& (TLI->getRegClassFor(VT)->getID() == RCId)) {
|
||||
NumberDeps++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return NumberDeps;
|
||||
}
|
||||
|
||||
unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU,
|
||||
unsigned RCId) {
|
||||
unsigned NumberDeps = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl())
|
||||
continue;
|
||||
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
const SDNode *ScegN = SuccSU->getNode();
|
||||
if (!ScegN)
|
||||
continue;
|
||||
|
||||
// If value is passed to CopyToReg, it is probably
|
||||
// live outside BB.
|
||||
switch (ScegN->getOpcode()) {
|
||||
default: break;
|
||||
case ISD::TokenFactor: break;
|
||||
case ISD::CopyFromReg: break;
|
||||
case ISD::CopyToReg: NumberDeps++; break;
|
||||
case ISD::INLINEASM: break;
|
||||
}
|
||||
if (!ScegN->isMachineOpcode())
|
||||
continue;
|
||||
|
||||
for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
|
||||
const SDValue &Op = ScegN->getOperand(i);
|
||||
EVT VT = Op.getNode()->getValueType(Op.getResNo());
|
||||
if (TLI->isTypeLegal(VT)
|
||||
&& (TLI->getRegClassFor(VT)->getID() == RCId)) {
|
||||
NumberDeps++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return NumberDeps;
|
||||
}
|
||||
|
||||
static unsigned numberCtrlDepsInSU(SUnit *SU) {
|
||||
unsigned NumberDeps = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
if (I->isCtrl())
|
||||
NumberDeps++;
|
||||
|
||||
return NumberDeps;
|
||||
}
|
||||
|
||||
static unsigned numberCtrlPredInSU(SUnit *SU) {
|
||||
unsigned NumberDeps = 0;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->isCtrl())
|
||||
NumberDeps++;
|
||||
|
||||
return NumberDeps;
|
||||
}
|
||||
|
||||
///
|
||||
/// Initialize nodes.
|
||||
///
|
||||
void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) {
|
||||
SUnits = &sunits;
|
||||
NumNodesSolelyBlocking.resize(SUnits->size(), 0);
|
||||
|
||||
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
|
||||
SUnit *SU = &(*SUnits)[i];
|
||||
initNumRegDefsLeft(SU);
|
||||
SU->NodeQueueId = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// This heuristic is used if DFA scheduling is not desired
|
||||
/// for some VLIW platform.
|
||||
bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
|
||||
// The isScheduleHigh flag allows nodes with wraparound dependencies that
|
||||
// cannot easily be modeled as edges with latencies to be scheduled as
|
||||
// soon as possible in a top-down schedule.
|
||||
if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
|
||||
return false;
|
||||
|
||||
if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
|
||||
return true;
|
||||
|
||||
unsigned LHSNum = LHS->NodeNum;
|
||||
unsigned RHSNum = RHS->NodeNum;
|
||||
|
||||
// The most important heuristic is scheduling the critical path.
|
||||
unsigned LHSLatency = PQ->getLatency(LHSNum);
|
||||
unsigned RHSLatency = PQ->getLatency(RHSNum);
|
||||
if (LHSLatency < RHSLatency) return true;
|
||||
if (LHSLatency > RHSLatency) return false;
|
||||
|
||||
// After that, if two nodes have identical latencies, look to see if one will
|
||||
// unblock more other nodes than the other.
|
||||
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
|
||||
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
|
||||
if (LHSBlocked < RHSBlocked) return true;
|
||||
if (LHSBlocked > RHSBlocked) return false;
|
||||
|
||||
// Finally, just to provide a stable ordering, use the node number as a
|
||||
// deciding factor.
|
||||
return LHSNum < RHSNum;
|
||||
}
|
||||
|
||||
|
||||
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
||||
/// of SU, return it, otherwise return null.
|
||||
SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
|
||||
SUnit *OnlyAvailablePred = 0;
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit &Pred = *I->getSUnit();
|
||||
if (!Pred.isScheduled) {
|
||||
// We found an available, but not scheduled, predecessor. If it's the
|
||||
// only one we have found, keep track of it... otherwise give up.
|
||||
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
||||
return 0;
|
||||
OnlyAvailablePred = &Pred;
|
||||
}
|
||||
}
|
||||
return OnlyAvailablePred;
|
||||
}
|
||||
|
||||
void ResourcePriorityQueue::push(SUnit *SU) {
|
||||
// Look at all of the successors of this node. Count the number of nodes that
|
||||
// this node is the sole unscheduled node for.
|
||||
unsigned NumNodesBlocking = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
|
||||
++NumNodesBlocking;
|
||||
|
||||
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
|
||||
Queue.push_back(SU);
|
||||
}
|
||||
|
||||
/// Check if scheduling of this SU is possible
|
||||
/// in the current packet.
|
||||
bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) {
|
||||
if (!SU || !SU->getNode())
|
||||
return false;
|
||||
|
||||
// If this is a compound instruction,
|
||||
// it is likely to be a call. Do not delay it.
|
||||
if (SU->getNode()->getGluedNode())
|
||||
return true;
|
||||
|
||||
// First see if the pipeline could receive this instruction
|
||||
// in the current cycle.
|
||||
if (SU->getNode()->isMachineOpcode())
|
||||
switch (SU->getNode()->getMachineOpcode()) {
|
||||
default:
|
||||
if (!ResourcesModel->canReserveResources(&TII->get(
|
||||
SU->getNode()->getMachineOpcode())))
|
||||
return false;
|
||||
case TargetOpcode::EXTRACT_SUBREG:
|
||||
case TargetOpcode::INSERT_SUBREG:
|
||||
case TargetOpcode::SUBREG_TO_REG:
|
||||
case TargetOpcode::REG_SEQUENCE:
|
||||
case TargetOpcode::IMPLICIT_DEF:
|
||||
break;
|
||||
}
|
||||
|
||||
// Now see if there are no other dependencies
|
||||
// to instructions alredy in the packet.
|
||||
for (unsigned i = 0, e = Packet.size(); i != e; ++i)
|
||||
for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
|
||||
E = Packet[i]->Succs.end(); I != E; ++I) {
|
||||
// Since we do not add pseudos to packets, might as well
|
||||
// ignor order deps.
|
||||
if (I->isCtrl())
|
||||
continue;
|
||||
|
||||
if (I->getSUnit() == SU)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Keep track of available resources.
|
||||
void ResourcePriorityQueue::reserveResources(SUnit *SU) {
|
||||
// If this SU does not fit in the packet
|
||||
// start a new one.
|
||||
if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) {
|
||||
ResourcesModel->clearResources();
|
||||
Packet.clear();
|
||||
}
|
||||
|
||||
if (SU->getNode() && SU->getNode()->isMachineOpcode()) {
|
||||
switch (SU->getNode()->getMachineOpcode()) {
|
||||
default:
|
||||
ResourcesModel->reserveResources(&TII->get(
|
||||
SU->getNode()->getMachineOpcode()));
|
||||
break;
|
||||
case TargetOpcode::EXTRACT_SUBREG:
|
||||
case TargetOpcode::INSERT_SUBREG:
|
||||
case TargetOpcode::SUBREG_TO_REG:
|
||||
case TargetOpcode::REG_SEQUENCE:
|
||||
case TargetOpcode::IMPLICIT_DEF:
|
||||
break;
|
||||
}
|
||||
Packet.push_back(SU);
|
||||
}
|
||||
// Forcefully end packet for PseudoOps.
|
||||
else {
|
||||
ResourcesModel->clearResources();
|
||||
Packet.clear();
|
||||
}
|
||||
|
||||
// If packet is now full, reset the state so in the next cycle
|
||||
// we start fresh.
|
||||
if (Packet.size() >= InstrItins->IssueWidth) {
|
||||
ResourcesModel->clearResources();
|
||||
Packet.clear();
|
||||
}
|
||||
}
|
||||
|
||||
signed ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) {
|
||||
signed RegBalance = 0;
|
||||
|
||||
if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
|
||||
return RegBalance;
|
||||
|
||||
// Gen estimate.
|
||||
for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) {
|
||||
EVT VT = SU->getNode()->getValueType(i);
|
||||
if (TLI->isTypeLegal(VT)
|
||||
&& TLI->getRegClassFor(VT)
|
||||
&& TLI->getRegClassFor(VT)->getID() == RCId)
|
||||
RegBalance += numberRCValSuccInSU(SU, RCId);
|
||||
}
|
||||
// Kill estimate.
|
||||
for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) {
|
||||
const SDValue &Op = SU->getNode()->getOperand(i);
|
||||
EVT VT = Op.getNode()->getValueType(Op.getResNo());
|
||||
if (isa<ConstantSDNode>(Op.getNode()))
|
||||
continue;
|
||||
|
||||
if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT)
|
||||
&& TLI->getRegClassFor(VT)->getID() == RCId)
|
||||
RegBalance -= numberRCValPredInSU(SU, RCId);
|
||||
}
|
||||
return RegBalance;
|
||||
}
|
||||
|
||||
/// Estimates change in reg pressure from this SU.
|
||||
/// It is acheived by trivial tracking of defined
|
||||
/// and used vregs in dependent instructions.
|
||||
/// The RawPressure flag makes this function to ignore
|
||||
/// existing reg file sizes, and report raw def/use
|
||||
/// balance.
|
||||
signed ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) {
|
||||
signed RegBalance = 0;
|
||||
|
||||
if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
|
||||
return RegBalance;
|
||||
|
||||
if (RawPressure) {
|
||||
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
||||
E = TRI->regclass_end(); I != E; ++I) {
|
||||
const TargetRegisterClass *RC = *I;
|
||||
RegBalance += rawRegPressureDelta(SU, RC->getID());
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
||||
E = TRI->regclass_end(); I != E; ++I) {
|
||||
const TargetRegisterClass *RC = *I;
|
||||
if ((RegPressure[RC->getID()] +
|
||||
rawRegPressureDelta(SU, RC->getID()) > 0) &&
|
||||
(RegPressure[RC->getID()] +
|
||||
rawRegPressureDelta(SU, RC->getID()) >= RegLimit[RC->getID()]))
|
||||
RegBalance += rawRegPressureDelta(SU, RC->getID());
|
||||
}
|
||||
}
|
||||
|
||||
return RegBalance;
|
||||
}
|
||||
|
||||
// Constants used to denote relative importance of
|
||||
// heuristic components for cost computation.
|
||||
static const unsigned PriorityOne = 200;
|
||||
static const unsigned PriorityTwo = 100;
|
||||
static const unsigned PriorityThree = 50;
|
||||
static const unsigned PriorityFour = 15;
|
||||
static const unsigned PriorityFive = 5;
|
||||
static const unsigned ScaleOne = 20;
|
||||
static const unsigned ScaleTwo = 10;
|
||||
static const unsigned ScaleThree = 5;
|
||||
static const unsigned FactorOne = 2;
|
||||
|
||||
/// Returns single number reflecting benefit of scheduling SU
|
||||
/// in the current cycle.
|
||||
signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) {
|
||||
// Initial trivial priority.
|
||||
signed ResCount = 1;
|
||||
|
||||
// Do not waste time on a node that is already scheduled.
|
||||
if (SU->isScheduled)
|
||||
return ResCount;
|
||||
|
||||
// Forced priority is high.
|
||||
if (SU->isScheduleHigh)
|
||||
ResCount += PriorityOne;
|
||||
|
||||
// Adaptable scheduling
|
||||
// A small, but very parallel
|
||||
// region, where reg pressure is an issue.
|
||||
if (HorizontalVerticalBalance > RegPressureThreshold) {
|
||||
// Critical path first
|
||||
ResCount += (SU->getHeight() * ScaleTwo);
|
||||
// If resources are available for it, multiply the
|
||||
// chance of scheduling.
|
||||
if (isResourceAvailable(SU))
|
||||
ResCount <<= FactorOne;
|
||||
|
||||
// Consider change to reg pressure from scheduling
|
||||
// this SU.
|
||||
ResCount -= (regPressureDelta(SU,true) * ScaleOne);
|
||||
}
|
||||
// Default heuristic, greeady and
|
||||
// critical path driven.
|
||||
else {
|
||||
// Critical path first.
|
||||
ResCount += (SU->getHeight() * ScaleTwo);
|
||||
// Now see how many instructions is blocked by this SU.
|
||||
ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo);
|
||||
// If resources are available for it, multiply the
|
||||
// chance of scheduling.
|
||||
if (isResourceAvailable(SU))
|
||||
ResCount <<= FactorOne;
|
||||
|
||||
ResCount -= (regPressureDelta(SU) * ScaleTwo);
|
||||
}
|
||||
|
||||
// These are platform specific things.
|
||||
// Will need to go into the back end
|
||||
// and accessed from here via a hook.
|
||||
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
|
||||
if (N->isMachineOpcode()) {
|
||||
const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
|
||||
if (TID.isCall())
|
||||
ResCount += (PriorityThree + (ScaleThree*N->getNumValues()));
|
||||
}
|
||||
else
|
||||
switch (N->getOpcode()) {
|
||||
default: break;
|
||||
case ISD::TokenFactor:
|
||||
case ISD::CopyFromReg:
|
||||
case ISD::CopyToReg:
|
||||
ResCount += PriorityFive;
|
||||
break;
|
||||
|
||||
case ISD::INLINEASM:
|
||||
ResCount += PriorityFour;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return ResCount;
|
||||
}
|
||||
|
||||
|
||||
/// Main resource tracking point.
|
||||
void ResourcePriorityQueue::ScheduledNode(SUnit *SU) {
|
||||
// Use NULL entry as an event marker to reset
|
||||
// the DFA state.
|
||||
if (!SU) {
|
||||
ResourcesModel->clearResources();
|
||||
Packet.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
const SDNode *ScegN = SU->getNode();
|
||||
// Update reg pressure tracking.
|
||||
// First update current node.
|
||||
if (ScegN->isMachineOpcode()) {
|
||||
// Estimate generated regs.
|
||||
for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
|
||||
EVT VT = ScegN->getValueType(i);
|
||||
|
||||
if (TLI->isTypeLegal(VT)) {
|
||||
const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
|
||||
if (RC)
|
||||
RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RC->getID());
|
||||
}
|
||||
}
|
||||
// Estimate killed regs.
|
||||
for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
|
||||
const SDValue &Op = ScegN->getOperand(i);
|
||||
EVT VT = Op.getNode()->getValueType(Op.getResNo());
|
||||
|
||||
if (TLI->isTypeLegal(VT)) {
|
||||
const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
|
||||
if (RC) {
|
||||
if (RegPressure[RC->getID()] >
|
||||
(numberRCValPredInSU(SU, RC->getID())))
|
||||
RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RC->getID());
|
||||
else RegPressure[RC->getID()] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl() || (I->getSUnit()->NumRegDefsLeft == 0))
|
||||
continue;
|
||||
--I->getSUnit()->NumRegDefsLeft;
|
||||
}
|
||||
}
|
||||
|
||||
// Reserve resources for this SU.
|
||||
reserveResources(SU);
|
||||
|
||||
// Adjust number of parallel live ranges.
|
||||
// Heuristic is simple - node with no data successors reduces
|
||||
// number of live ranges. All others, increase it.
|
||||
unsigned NumberNonControlDeps = 0;
|
||||
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
adjustPriorityOfUnscheduledPreds(I->getSUnit());
|
||||
if (!I->isCtrl())
|
||||
NumberNonControlDeps++;
|
||||
}
|
||||
|
||||
if (!NumberNonControlDeps) {
|
||||
if (ParallelLiveRanges >= SU->NumPreds)
|
||||
ParallelLiveRanges -= SU->NumPreds;
|
||||
else
|
||||
ParallelLiveRanges = 0;
|
||||
|
||||
}
|
||||
else
|
||||
ParallelLiveRanges += SU->NumRegDefsLeft;
|
||||
|
||||
// Track parallel live chains.
|
||||
HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU));
|
||||
HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU));
|
||||
}
|
||||
|
||||
void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) {
|
||||
unsigned NodeNumDefs = 0;
|
||||
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
|
||||
if (N->isMachineOpcode()) {
|
||||
const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
|
||||
// No register need be allocated for this.
|
||||
if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
|
||||
NodeNumDefs = 0;
|
||||
break;
|
||||
}
|
||||
NodeNumDefs = std::min(N->getNumValues(), TID.getNumDefs());
|
||||
}
|
||||
else
|
||||
switch(N->getOpcode()) {
|
||||
default: break;
|
||||
case ISD::CopyFromReg:
|
||||
NodeNumDefs++;
|
||||
break;
|
||||
case ISD::INLINEASM:
|
||||
NodeNumDefs++;
|
||||
break;
|
||||
}
|
||||
|
||||
SU->NumRegDefsLeft = NodeNumDefs;
|
||||
}
|
||||
|
||||
/// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
||||
/// scheduled. If SU is not itself available, then there is at least one
|
||||
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
|
||||
/// unscheduled predecessor, we want to increase its priority: it getting
|
||||
/// scheduled will make this node available, so it is better than some other
|
||||
/// node of the same priority that will not make a node available.
|
||||
void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
||||
if (SU->isAvailable) return; // All preds scheduled.
|
||||
|
||||
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
|
||||
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable)
|
||||
return;
|
||||
|
||||
// Okay, we found a single predecessor that is available, but not scheduled.
|
||||
// Since it is available, it must be in the priority queue. First remove it.
|
||||
remove(OnlyAvailablePred);
|
||||
|
||||
// Reinsert the node into the priority queue, which recomputes its
|
||||
// NumNodesSolelyBlocking value.
|
||||
push(OnlyAvailablePred);
|
||||
}
|
||||
|
||||
|
||||
/// Main access point - returns next instructions
|
||||
/// to be placed in scheduling sequence.
|
||||
SUnit *ResourcePriorityQueue::pop() {
|
||||
if (empty())
|
||||
return 0;
|
||||
|
||||
std::vector<SUnit *>::iterator Best = Queue.begin();
|
||||
if (!DisableDFASched) {
|
||||
signed BestCost = SUSchedulingCost(*Best);
|
||||
for (std::vector<SUnit *>::iterator I = Queue.begin(),
|
||||
E = Queue.end(); I != E; ++I) {
|
||||
if (*I == *Best)
|
||||
continue;
|
||||
|
||||
if (SUSchedulingCost(*I) > BestCost) {
|
||||
BestCost = SUSchedulingCost(*I);
|
||||
Best = I;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Use default TD scheduling mechanism.
|
||||
else {
|
||||
for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
|
||||
E = Queue.end(); I != E; ++I)
|
||||
if (Picker(*Best, *I))
|
||||
Best = I;
|
||||
}
|
||||
|
||||
SUnit *V = *Best;
|
||||
if (Best != prior(Queue.end()))
|
||||
std::swap(*Best, Queue.back());
|
||||
|
||||
Queue.pop_back();
|
||||
|
||||
return V;
|
||||
}
|
||||
|
||||
|
||||
void ResourcePriorityQueue::remove(SUnit *SU) {
|
||||
assert(!Queue.empty() && "Queue is empty!");
|
||||
std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
|
||||
if (I != prior(Queue.end()))
|
||||
std::swap(*I, Queue.back());
|
||||
|
||||
Queue.pop_back();
|
||||
}
|
||||
|
||||
|
||||
#ifdef NDEBUG
|
||||
void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {}
|
||||
#else
|
||||
void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {
|
||||
ResourcePriorityQueue q = *this;
|
||||
while (!q.empty()) {
|
||||
SUnit *su = q.pop();
|
||||
dbgs() << "Height " << su->getHeight() << ": ";
|
||||
su->dump(DAG);
|
||||
}
|
||||
}
|
||||
#endif
|
276
lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
Normal file
276
lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
Normal file
@ -0,0 +1,276 @@
|
||||
//===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This implements a top-down list scheduler, using standard algorithms.
|
||||
// The basic approach uses a priority queue of available nodes to schedule.
|
||||
// One at a time, nodes are taken from the priority queue (thus in priority
|
||||
// order), checked for legality to schedule, and emitted if legal.
|
||||
//
|
||||
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
||||
// pipeline or resource constraints) or because an input to the instruction has
|
||||
// not completed execution.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "pre-RA-sched"
|
||||
#include "ScheduleDAGSDNodes.h"
|
||||
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
||||
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
||||
#include "llvm/CodeGen/SchedulerRegistry.h"
|
||||
#include "llvm/CodeGen/SelectionDAGISel.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/ResourcePriorityQueue.h"
|
||||
#include <climits>
|
||||
using namespace llvm;
|
||||
|
||||
STATISTIC(NumNoops , "Number of noops inserted");
|
||||
STATISTIC(NumStalls, "Number of pipeline stalls");
|
||||
|
||||
static RegisterScheduler
|
||||
VLIWScheduler("vliw-td", "VLIW scheduler",
|
||||
createVLIWDAGScheduler);
|
||||
|
||||
namespace {
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
|
||||
/// supports / top-down scheduling.
|
||||
///
|
||||
class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
|
||||
private:
|
||||
/// AvailableQueue - The priority queue to use for the available SUnits.
|
||||
///
|
||||
SchedulingPriorityQueue *AvailableQueue;
|
||||
|
||||
/// PendingQueue - This contains all of the instructions whose operands have
|
||||
/// been issued, but their results are not ready yet (due to the latency of
|
||||
/// the operation). Once the operands become available, the instruction is
|
||||
/// added to the AvailableQueue.
|
||||
std::vector<SUnit*> PendingQueue;
|
||||
|
||||
/// HazardRec - The hazard recognizer to use.
|
||||
ScheduleHazardRecognizer *HazardRec;
|
||||
|
||||
/// AA - AliasAnalysis for making memory reference queries.
|
||||
AliasAnalysis *AA;
|
||||
|
||||
public:
|
||||
ScheduleDAGVLIW(MachineFunction &mf,
|
||||
AliasAnalysis *aa,
|
||||
SchedulingPriorityQueue *availqueue)
|
||||
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
|
||||
|
||||
const TargetMachine &tm = mf.getTarget();
|
||||
HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
|
||||
}
|
||||
|
||||
~ScheduleDAGVLIW() {
|
||||
delete HazardRec;
|
||||
delete AvailableQueue;
|
||||
}
|
||||
|
||||
void Schedule();
|
||||
|
||||
private:
|
||||
void releaseSucc(SUnit *SU, const SDep &D);
|
||||
void releaseSuccessors(SUnit *SU);
|
||||
void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void listScheduleTopDown();
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
/// Schedule - Schedule the DAG using list scheduling.
|
||||
void ScheduleDAGVLIW::Schedule() {
|
||||
DEBUG(dbgs()
|
||||
<< "********** List Scheduling BB#" << BB->getNumber()
|
||||
<< " '" << BB->getName() << "' **********\n");
|
||||
|
||||
// Build the scheduling graph.
|
||||
BuildSchedGraph(AA);
|
||||
|
||||
AvailableQueue->initNodes(SUnits);
|
||||
|
||||
listScheduleTopDown();
|
||||
|
||||
AvailableQueue->releaseState();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Top-Down Scheduling
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
|
||||
SUnit *SuccSU = D.getSUnit();
|
||||
|
||||
#ifndef NDEBUG
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
dbgs() << "*** Scheduling failed! ***\n";
|
||||
SuccSU->dump(this);
|
||||
dbgs() << " has been released too many times!\n";
|
||||
llvm_unreachable(0);
|
||||
}
|
||||
#endif
|
||||
--SuccSU->NumPredsLeft;
|
||||
|
||||
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
|
||||
|
||||
// If all the node's predecessors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special ExitSU node.
|
||||
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
|
||||
PendingQueue.push_back(SuccSU);
|
||||
}
|
||||
}
|
||||
|
||||
void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
assert(!I->isAssignedRegDep() &&
|
||||
"The list-td scheduler doesn't yet support physreg dependencies!");
|
||||
|
||||
releaseSucc(SU, *I);
|
||||
}
|
||||
}
|
||||
|
||||
/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
/// count of its successors. If a successor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
|
||||
DEBUG(SU->dump(this));
|
||||
|
||||
Sequence.push_back(SU);
|
||||
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
|
||||
SU->setDepthToAtLeast(CurCycle);
|
||||
|
||||
releaseSuccessors(SU);
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
}
|
||||
|
||||
/// listScheduleTopDown - The main loop of list scheduling for top-down
|
||||
/// schedulers.
|
||||
void ScheduleDAGVLIW::listScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any successors of the special Entry node.
|
||||
releaseSuccessors(&EntrySU);
|
||||
|
||||
// All leaves to AvailableQueue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
if (SUnits[i].Preds.empty()) {
|
||||
AvailableQueue->push(&SUnits[i]);
|
||||
SUnits[i].isAvailable = true;
|
||||
}
|
||||
}
|
||||
|
||||
// While AvailableQueue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
Sequence.reserve(SUnits.size());
|
||||
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
|
||||
// Check to see if any of the pending instructions are ready to issue. If
|
||||
// so, add them to the available queue.
|
||||
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
||||
if (PendingQueue[i]->getDepth() == CurCycle) {
|
||||
AvailableQueue->push(PendingQueue[i]);
|
||||
PendingQueue[i]->isAvailable = true;
|
||||
PendingQueue[i] = PendingQueue.back();
|
||||
PendingQueue.pop_back();
|
||||
--i; --e;
|
||||
}
|
||||
else {
|
||||
assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
|
||||
}
|
||||
}
|
||||
|
||||
// If there are no instructions available, don't try to issue anything, and
|
||||
// don't advance the hazard recognizer.
|
||||
if (AvailableQueue->empty()) {
|
||||
// Reset DFA state.
|
||||
AvailableQueue->ScheduledNode(0);
|
||||
++CurCycle;
|
||||
continue;
|
||||
}
|
||||
|
||||
SUnit *FoundSUnit = 0;
|
||||
|
||||
bool HasNoopHazards = false;
|
||||
while (!AvailableQueue->empty()) {
|
||||
SUnit *CurSUnit = AvailableQueue->pop();
|
||||
|
||||
ScheduleHazardRecognizer::HazardType HT =
|
||||
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
|
||||
if (HT == ScheduleHazardRecognizer::NoHazard) {
|
||||
FoundSUnit = CurSUnit;
|
||||
break;
|
||||
}
|
||||
|
||||
// Remember if this is a noop hazard.
|
||||
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
|
||||
|
||||
NotReady.push_back(CurSUnit);
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
if (!NotReady.empty()) {
|
||||
AvailableQueue->push_all(NotReady);
|
||||
NotReady.clear();
|
||||
}
|
||||
|
||||
// If we found a node to schedule, do it now.
|
||||
if (FoundSUnit) {
|
||||
scheduleNodeTopDown(FoundSUnit, CurCycle);
|
||||
HazardRec->EmitInstruction(FoundSUnit);
|
||||
|
||||
// If this is a pseudo-op node, we don't want to increment the current
|
||||
// cycle.
|
||||
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
||||
++CurCycle;
|
||||
} else if (!HasNoopHazards) {
|
||||
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
||||
// the current cycle and try again.
|
||||
DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
|
||||
HazardRec->AdvanceCycle();
|
||||
++NumStalls;
|
||||
++CurCycle;
|
||||
} else {
|
||||
// Otherwise, we have no instructions to issue and we have instructions
|
||||
// that will fault if we don't do this right. This is the case for
|
||||
// processors without pipeline interlocks and other cases.
|
||||
DEBUG(dbgs() << "*** Emitting noop\n");
|
||||
HazardRec->EmitNoop();
|
||||
Sequence.push_back(0); // NULL here means noop
|
||||
++NumNoops;
|
||||
++CurCycle;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
VerifySchedule(/*isBottomUp=*/false);
|
||||
#endif
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Public Constructor Functions
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// createVLIWDAGScheduler - This creates a top-down list scheduler.
|
||||
ScheduleDAGSDNodes *
|
||||
llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
|
||||
return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
|
||||
}
|
@ -225,6 +225,8 @@ namespace llvm {
|
||||
return createBURRListDAGScheduler(IS, OptLevel);
|
||||
if (TLI.getSchedulingPreference() == Sched::Hybrid)
|
||||
return createHybridListDAGScheduler(IS, OptLevel);
|
||||
if (TLI.getSchedulingPreference() == Sched::VLIW)
|
||||
return createVLIWDAGScheduler(IS, OptLevel);
|
||||
assert(TLI.getSchedulingPreference() == Sched::ILP &&
|
||||
"Unknown sched type!");
|
||||
return createILPListDAGScheduler(IS, OptLevel);
|
||||
|
@ -1298,6 +1298,7 @@ HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine
|
||||
// Needed for DYNAMIC_STACKALLOC expansion.
|
||||
unsigned StackRegister = TM.getRegisterInfo()->getStackRegister();
|
||||
setStackPointerRegisterToSaveRestore(StackRegister);
|
||||
setSchedulingPreference(Sched::VLIW);
|
||||
}
|
||||
|
||||
|
||||
|
@ -24,7 +24,9 @@
|
||||
#include "llvm/CodeGen/MachineMemOperand.h"
|
||||
#include "llvm/CodeGen/PseudoSourceValue.h"
|
||||
#define GET_INSTRINFO_CTOR
|
||||
#include "llvm/CodeGen/DFAPacketizer.h"
|
||||
#include "HexagonGenInstrInfo.inc"
|
||||
#include "HexagonGenDFAPacketizer.inc"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
@ -469,6 +471,7 @@ unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
|
||||
bool isPred = MI->getDesc().isPredicable();
|
||||
|
||||
@ -559,6 +562,7 @@ bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
|
||||
}
|
||||
|
||||
|
||||
|
||||
int HexagonInstrInfo::
|
||||
getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
|
||||
switch(Opc) {
|
||||
@ -1450,3 +1454,29 @@ isConditionalLoad (const MachineInstr* MI) const {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
DFAPacketizer *HexagonInstrInfo::
|
||||
CreateTargetScheduleState(const TargetMachine *TM,
|
||||
const ScheduleDAG *DAG) const {
|
||||
const InstrItineraryData *II = TM->getInstrItineraryData();
|
||||
return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
|
||||
}
|
||||
|
||||
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
|
||||
const MachineBasicBlock *MBB,
|
||||
const MachineFunction &MF) const {
|
||||
// Debug info is never a scheduling boundary. It's necessary to be explicit
|
||||
// due to the special treatment of IT instructions below, otherwise a
|
||||
// dbg_value followed by an IT will result in the IT instruction being
|
||||
// considered a scheduling hazard, which is wrong. It should be the actual
|
||||
// instruction preceding the dbg_value instruction(s), just like it is
|
||||
// when debug info is not present.
|
||||
if (MI->isDebugValue())
|
||||
return false;
|
||||
|
||||
// Terminators and labels can't be scheduled around.
|
||||
if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -135,6 +135,13 @@ public:
|
||||
isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumCycles,
|
||||
const BranchProbability &Probability) const;
|
||||
|
||||
virtual DFAPacketizer*
|
||||
CreateTargetScheduleState(const TargetMachine *TM,
|
||||
const ScheduleDAG *DAG) const;
|
||||
|
||||
virtual bool isSchedulingBoundary(const MachineInstr *MI,
|
||||
const MachineBasicBlock *MBB,
|
||||
const MachineFunction &MF) const;
|
||||
bool isValidOffset(const int Opcode, const int Offset) const;
|
||||
bool isValidAutoIncImm(const EVT VT, const int Offset) const;
|
||||
bool isMemOp(const MachineInstr *MI) const;
|
||||
|
@ -52,6 +52,9 @@ HexagonSubtarget::HexagonSubtarget(StringRef TT, StringRef CPU, StringRef FS):
|
||||
// Initialize scheduling itinerary for the specified CPU.
|
||||
InstrItins = getInstrItineraryForCPU(CPUString);
|
||||
|
||||
// Max issue per cycle == bundle width.
|
||||
InstrItins.IssueWidth = 4;
|
||||
|
||||
if (EnableMemOps)
|
||||
UseMemOps = true;
|
||||
else
|
||||
|
@ -16,6 +16,7 @@ BUILT_SOURCES = HexagonGenRegisterInfo.inc \
|
||||
HexagonGenAsmWriter.inc \
|
||||
HexagonGenDAGISel.inc HexagonGenSubtargetInfo.inc \
|
||||
HexagonGenCallingConv.inc \
|
||||
HexagonGenDFAPacketizer.inc \
|
||||
HexagonAsmPrinter.cpp
|
||||
|
||||
DIRS = TargetInfo MCTargetDesc
|
||||
|
@ -1,4 +1,4 @@
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv4 < %s | FileCheck %s
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv4 -disable-dfa-sched < %s | FileCheck %s
|
||||
; CHECK: r[[T0:[0-9]+]] = #7
|
||||
; CHECK: memw(r29 + #0) = r[[T0]]
|
||||
; CHECK: r0 = #1
|
||||
|
@ -1,12 +1,12 @@
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv4 < %s | FileCheck %s
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv4 -disable-dfa-sched < %s | FileCheck %s
|
||||
|
||||
@num = external global i32
|
||||
@acc = external global i32
|
||||
@val = external global i32
|
||||
|
||||
; CHECK: CONST32(#num)
|
||||
; CHECK: CONST32(#acc)
|
||||
; CHECK: CONST32(#val)
|
||||
; CHECK: CONST32(#num)
|
||||
|
||||
define void @foo() nounwind {
|
||||
entry:
|
||||
|
Loading…
x
Reference in New Issue
Block a user