Rename getSDiv to getExactSDiv to reflect its behavior in cases where

the division would have a remainder.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96693 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2010-02-19 19:35:48 +00:00
parent aae01f17a6
commit f09b71233b

View File

@ -364,14 +364,15 @@ static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
}
/// getSDiv - Return an expression for LHS /s RHS, if it can be determined,
/// or null otherwise. If IgnoreSignificantBits is true, expressions like
/// (X * Y) /s Y are simplified to Y, ignoring that the multiplication may
/// overflow, which is useful when the result will be used in a context where
/// the most significant bits are ignored.
static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE,
bool IgnoreSignificantBits = false) {
/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
/// and if the remainder is known to be zero, or null otherwise. If
/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
/// to Y, ignoring that the multiplication may overflow, which is useful when
/// the result will be used in a context where the most significant bits are
/// ignored.
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE,
bool IgnoreSignificantBits = false) {
// Handle the trivial case, which works for any SCEV type.
if (LHS == RHS)
return SE.getIntegerSCEV(1, LHS->getType());
@ -395,11 +396,11 @@ static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
// Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
const SCEV *Start = getSDiv(AR->getStart(), RHS, SE,
IgnoreSignificantBits);
const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
IgnoreSignificantBits);
if (!Start) return 0;
const SCEV *Step = getSDiv(AR->getStepRecurrence(SE), RHS, SE,
IgnoreSignificantBits);
const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
IgnoreSignificantBits);
if (!Step) return 0;
return SE.getAddRecExpr(Start, Step, AR->getLoop());
}
@ -411,8 +412,8 @@ static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
SmallVector<const SCEV *, 8> Ops;
for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
I != E; ++I) {
const SCEV *Op = getSDiv(*I, RHS, SE,
IgnoreSignificantBits);
const SCEV *Op = getExactSDiv(*I, RHS, SE,
IgnoreSignificantBits);
if (!Op) return 0;
Ops.push_back(Op);
}
@ -428,7 +429,8 @@ static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
I != E; ++I) {
if (!Found)
if (const SCEV *Q = getSDiv(*I, RHS, SE, IgnoreSignificantBits)) {
if (const SCEV *Q = getExactSDiv(*I, RHS, SE,
IgnoreSignificantBits)) {
Ops.push_back(Q);
Found = true;
continue;
@ -1560,7 +1562,7 @@ LSRInstance::OptimizeLoopTermCond() {
A = SE.getSignExtendExpr(A, B->getType());
}
if (const SCEVConstant *D =
dyn_cast_or_null<SCEVConstant>(getSDiv(B, A, SE))) {
dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
// Stride of one or negative one can have reuse with non-addresses.
if (D->getValue()->isOne() ||
D->getValue()->isAllOnesValue())
@ -1754,13 +1756,13 @@ void LSRInstance::CollectInterestingTypesAndFactors() {
OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
}
if (const SCEVConstant *Factor =
dyn_cast_or_null<SCEVConstant>(getSDiv(NewStride, OldStride,
SE, true))) {
dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
SE, true))) {
if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
Factors.insert(Factor->getValue()->getValue().getSExtValue());
} else if (const SCEVConstant *Factor =
dyn_cast_or_null<SCEVConstant>(getSDiv(OldStride, NewStride,
SE, true))) {
dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, NewStride,
SE, true))) {
if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
Factors.insert(Factor->getValue()->getValue().getSExtValue());
}
@ -2175,14 +2177,14 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
// Check that multiplying with each base register doesn't overflow.
for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
if (getSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
goto next;
}
// Check that multiplying with the scaled register doesn't overflow.
if (F.ScaledReg) {
F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
if (getSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
continue;
}
@ -2237,7 +2239,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
continue;
// Divide out the factor, ignoring high bits, since we'll be
// scaling the value back up in the end.
if (const SCEV *Quotient = getSDiv(AR, FactorS, SE, true)) {
if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
// TODO: This could be optimized to avoid all the copying.
Formula F = Base;
F.ScaledReg = Quotient;