Make the assertion macros in Verifier and Linter truly variadic.

NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231577 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2015-03-07 21:15:40 +00:00
parent 0e7a2ca4b8
commit fab98a4843
2 changed files with 1003 additions and 1049 deletions

View File

@ -129,27 +129,26 @@ namespace {
}
void print(raw_ostream &O, const Module *M) const override {}
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
MessagesStr << *V << '\n';
} else {
V->printAsOperand(MessagesStr, true, Mod);
MessagesStr << '\n';
void WriteValues(ArrayRef<const Value *> Vs) {
for (const Value *V : Vs) {
if (!V)
continue;
if (isa<Instruction>(V)) {
MessagesStr << *V << '\n';
} else {
V->printAsOperand(MessagesStr, true, Mod);
MessagesStr << '\n';
}
}
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message,
const Value *V1 = nullptr, const Value *V2 = nullptr,
const Value *V3 = nullptr, const Value *V4 = nullptr) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
template <typename... Ts>
void CheckFailed(const Twine &Message, const Ts &...Vs) {
MessagesStr << Message << '\n';
WriteValues({Vs...});
}
};
}
@ -165,16 +164,8 @@ INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
false, true)
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
#define Assert(C, ...) \
do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
// Lint::run - This is the main Analysis entry point for a
// function.
@ -195,8 +186,8 @@ bool Lint::runOnFunction(Function &F) {
void Lint::visitFunction(Function &F) {
// This isn't undefined behavior, it's just a little unusual, and it's a
// fairly common mistake to neglect to name a function.
Assert1(F.hasName() || F.hasLocalLinkage(),
"Unusual: Unnamed function with non-local linkage", &F);
Assert(F.hasName() || F.hasLocalLinkage(),
"Unusual: Unnamed function with non-local linkage", &F);
// TODO: Check for irreducible control flow.
}
@ -209,22 +200,23 @@ void Lint::visitCallSite(CallSite CS) {
0, nullptr, MemRef::Callee);
if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
Assert1(CS.getCallingConv() == F->getCallingConv(),
"Undefined behavior: Caller and callee calling convention differ",
&I);
Assert(CS.getCallingConv() == F->getCallingConv(),
"Undefined behavior: Caller and callee calling convention differ",
&I);
FunctionType *FT = F->getFunctionType();
unsigned NumActualArgs = CS.arg_size();
Assert1(FT->isVarArg() ?
FT->getNumParams() <= NumActualArgs :
FT->getNumParams() == NumActualArgs,
"Undefined behavior: Call argument count mismatches callee "
"argument count", &I);
Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
: FT->getNumParams() == NumActualArgs,
"Undefined behavior: Call argument count mismatches callee "
"argument count",
&I);
Assert1(FT->getReturnType() == I.getType(),
"Undefined behavior: Call return type mismatches "
"callee return type", &I);
Assert(FT->getReturnType() == I.getType(),
"Undefined behavior: Call return type mismatches "
"callee return type",
&I);
// Check argument types (in case the callee was casted) and attributes.
// TODO: Verify that caller and callee attributes are compatible.
@ -234,9 +226,10 @@ void Lint::visitCallSite(CallSite CS) {
Value *Actual = *AI;
if (PI != PE) {
Argument *Formal = PI++;
Assert1(Formal->getType() == Actual->getType(),
"Undefined behavior: Call argument type mismatches "
"callee parameter type", &I);
Assert(Formal->getType() == Actual->getType(),
"Undefined behavior: Call argument type mismatches "
"callee parameter type",
&I);
// Check that noalias arguments don't alias other arguments. This is
// not fully precise because we don't know the sizes of the dereferenced
@ -245,9 +238,9 @@ void Lint::visitCallSite(CallSite CS) {
for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
if (AI != BI && (*BI)->getType()->isPointerTy()) {
AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
Assert1(Result != AliasAnalysis::MustAlias &&
Result != AliasAnalysis::PartialAlias,
"Unusual: noalias argument aliases another argument", &I);
Assert(Result != AliasAnalysis::MustAlias &&
Result != AliasAnalysis::PartialAlias,
"Unusual: noalias argument aliases another argument", &I);
}
// Check that an sret argument points to valid memory.
@ -266,9 +259,9 @@ void Lint::visitCallSite(CallSite CS) {
for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
AI != AE; ++AI) {
Value *Obj = findValue(*AI, /*OffsetOk=*/true);
Assert1(!isa<AllocaInst>(Obj),
"Undefined behavior: Call with \"tail\" keyword references "
"alloca", &I);
Assert(!isa<AllocaInst>(Obj),
"Undefined behavior: Call with \"tail\" keyword references alloca",
&I);
}
@ -297,9 +290,9 @@ void Lint::visitCallSite(CallSite CS) {
/*OffsetOk=*/false)))
if (Len->getValue().isIntN(32))
Size = Len->getValue().getZExtValue();
Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
AliasAnalysis::MustAlias,
"Undefined behavior: memcpy source and destination overlap", &I);
Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
AliasAnalysis::MustAlias,
"Undefined behavior: memcpy source and destination overlap", &I);
break;
}
case Intrinsic::memmove: {
@ -323,9 +316,9 @@ void Lint::visitCallSite(CallSite CS) {
}
case Intrinsic::vastart:
Assert1(I.getParent()->getParent()->isVarArg(),
"Undefined behavior: va_start called in a non-varargs function",
&I);
Assert(I.getParent()->getParent()->isVarArg(),
"Undefined behavior: va_start called in a non-varargs function",
&I);
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
0, nullptr, MemRef::Read | MemRef::Write);
@ -368,14 +361,12 @@ void Lint::visitInvokeInst(InvokeInst &I) {
void Lint::visitReturnInst(ReturnInst &I) {
Function *F = I.getParent()->getParent();
Assert1(!F->doesNotReturn(),
"Unusual: Return statement in function with noreturn attribute",
&I);
Assert(!F->doesNotReturn(),
"Unusual: Return statement in function with noreturn attribute", &I);
if (Value *V = I.getReturnValue()) {
Value *Obj = findValue(V, /*OffsetOk=*/true);
Assert1(!isa<AllocaInst>(Obj),
"Unusual: Returning alloca value", &I);
Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
}
}
@ -390,39 +381,39 @@ void Lint::visitMemoryReference(Instruction &I,
return;
Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
"Undefined behavior: Null pointer dereference", &I);
Assert1(!isa<UndefValue>(UnderlyingObject),
"Undefined behavior: Undef pointer dereference", &I);
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
!cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
"Unusual: All-ones pointer dereference", &I);
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
!cast<ConstantInt>(UnderlyingObject)->isOne(),
"Unusual: Address one pointer dereference", &I);
Assert(!isa<ConstantPointerNull>(UnderlyingObject),
"Undefined behavior: Null pointer dereference", &I);
Assert(!isa<UndefValue>(UnderlyingObject),
"Undefined behavior: Undef pointer dereference", &I);
Assert(!isa<ConstantInt>(UnderlyingObject) ||
!cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
"Unusual: All-ones pointer dereference", &I);
Assert(!isa<ConstantInt>(UnderlyingObject) ||
!cast<ConstantInt>(UnderlyingObject)->isOne(),
"Unusual: Address one pointer dereference", &I);
if (Flags & MemRef::Write) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
Assert1(!GV->isConstant(),
"Undefined behavior: Write to read-only memory", &I);
Assert1(!isa<Function>(UnderlyingObject) &&
!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Write to text section", &I);
Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
&I);
Assert(!isa<Function>(UnderlyingObject) &&
!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Write to text section", &I);
}
if (Flags & MemRef::Read) {
Assert1(!isa<Function>(UnderlyingObject),
"Unusual: Load from function body", &I);
Assert1(!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Load from block address", &I);
Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
&I);
Assert(!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Load from block address", &I);
}
if (Flags & MemRef::Callee) {
Assert1(!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Call to block address", &I);
Assert(!isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Call to block address", &I);
}
if (Flags & MemRef::Branchee) {
Assert1(!isa<Constant>(UnderlyingObject) ||
isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Branch to non-blockaddress", &I);
Assert(!isa<Constant>(UnderlyingObject) ||
isa<BlockAddress>(UnderlyingObject),
"Undefined behavior: Branch to non-blockaddress", &I);
}
// Check for buffer overflows and misalignment.
@ -458,17 +449,17 @@ void Lint::visitMemoryReference(Instruction &I,
// Accesses from before the start or after the end of the object are not
// defined.
Assert1(Size == AliasAnalysis::UnknownSize ||
BaseSize == AliasAnalysis::UnknownSize ||
(Offset >= 0 && Offset + Size <= BaseSize),
"Undefined behavior: Buffer overflow", &I);
Assert(Size == AliasAnalysis::UnknownSize ||
BaseSize == AliasAnalysis::UnknownSize ||
(Offset >= 0 && Offset + Size <= BaseSize),
"Undefined behavior: Buffer overflow", &I);
// Accesses that say that the memory is more aligned than it is are not
// defined.
if (DL && Align == 0 && Ty && Ty->isSized())
Align = DL->getABITypeAlignment(Ty);
Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
"Undefined behavior: Memory reference address is misaligned", &I);
Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
"Undefined behavior: Memory reference address is misaligned", &I);
}
}
@ -486,36 +477,34 @@ void Lint::visitStoreInst(StoreInst &I) {
}
void Lint::visitXor(BinaryOperator &I) {
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
!isa<UndefValue>(I.getOperand(1)),
"Undefined result: xor(undef, undef)", &I);
Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
"Undefined result: xor(undef, undef)", &I);
}
void Lint::visitSub(BinaryOperator &I) {
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
!isa<UndefValue>(I.getOperand(1)),
"Undefined result: sub(undef, undef)", &I);
Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
"Undefined result: sub(undef, undef)", &I);
}
void Lint::visitLShr(BinaryOperator &I) {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
}
void Lint::visitAShr(BinaryOperator &I) {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
}
void Lint::visitShl(BinaryOperator &I) {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
"Undefined result: Shift count out of range", &I);
}
static bool
@ -597,9 +586,9 @@ void Lint::visitEHBeginCatch(IntrinsicInst *II) {
// The begin catch must occur in a landing pad block or all paths
// to it must have come from a landing pad.
Assert1(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
"llvm.eh.begincatch may be reachable without passing a landingpad",
II);
Assert(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
"llvm.eh.begincatch may be reachable without passing a landingpad",
II);
// Reset the visited block list.
VisitedBlocks.clear();
@ -611,13 +600,13 @@ void Lint::visitEHBeginCatch(IntrinsicInst *II) {
bool EndCatchFound = allSuccessorsReachEndCatch(
CatchBB, std::next(static_cast<BasicBlock::iterator>(II)),
&SecondBeginCatch, VisitedBlocks);
Assert2(
Assert(
SecondBeginCatch == nullptr,
"llvm.eh.begincatch may be called a second time before llvm.eh.endcatch",
II, SecondBeginCatch);
Assert1(EndCatchFound,
"Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
II);
Assert(EndCatchFound,
"Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
II);
}
static bool allPredCameFromBeginCatch(
@ -690,14 +679,13 @@ void Lint::visitEHEndCatch(IntrinsicInst *II) {
bool BeginCatchFound =
allPredCameFromBeginCatch(EndCatchBB, BasicBlock::reverse_iterator(II),
&SecondEndCatch, VisitedBlocks);
Assert2(
Assert(
SecondEndCatch == nullptr,
"llvm.eh.endcatch may be called a second time after llvm.eh.begincatch",
II, SecondEndCatch);
Assert1(
BeginCatchFound,
"llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
II);
Assert(BeginCatchFound,
"llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
II);
}
static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
@ -741,30 +729,30 @@ static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
}
void Lint::visitSDiv(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
Assert(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitUDiv(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
Assert(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitSRem(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
Assert(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitURem(BinaryOperator &I) {
Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
Assert(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitAllocaInst(AllocaInst &I) {
if (isa<ConstantInt>(I.getArraySize()))
// This isn't undefined behavior, it's just an obvious pessimization.
Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
"Pessimization: Static alloca outside of entry block", &I);
Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
"Pessimization: Static alloca outside of entry block", &I);
// TODO: Check for an unusual size (MSB set?)
}
@ -778,32 +766,33 @@ void Lint::visitIndirectBrInst(IndirectBrInst &I) {
visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
nullptr, MemRef::Branchee);
Assert1(I.getNumDestinations() != 0,
"Undefined behavior: indirectbr with no destinations", &I);
Assert(I.getNumDestinations() != 0,
"Undefined behavior: indirectbr with no destinations", &I);
}
void Lint::visitExtractElementInst(ExtractElementInst &I) {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
/*OffsetOk=*/false)))
Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
"Undefined result: extractelement index out of range", &I);
Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
"Undefined result: extractelement index out of range", &I);
}
void Lint::visitInsertElementInst(InsertElementInst &I) {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(findValue(I.getOperand(2),
/*OffsetOk=*/false)))
Assert1(CI->getValue().ult(I.getType()->getNumElements()),
"Undefined result: insertelement index out of range", &I);
Assert(CI->getValue().ult(I.getType()->getNumElements()),
"Undefined result: insertelement index out of range", &I);
}
void Lint::visitUnreachableInst(UnreachableInst &I) {
// This isn't undefined behavior, it's merely suspicious.
Assert1(&I == I.getParent()->begin() ||
std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
"Unusual: unreachable immediately preceded by instruction without "
"side effects", &I);
Assert(&I == I.getParent()->begin() ||
std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
"Unusual: unreachable immediately preceded by instruction without "
"side effects",
&I);
}
/// findValue - Look through bitcasts and simple memory reference patterns

File diff suppressed because it is too large Load Diff