After r203553 overflow intrinsics and their non-intrinsic (normal)
instruction get hashed to the same value. This patch prevents PRE from
moving an instruction into a predecessor block, and trying to add a phi
node that gets two different types (the intrinsic result and the
non-intrinsic result), resulting in a failing assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203574 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
When an overflow intrinsic is followed by a non-overflow instruction,
replace the latter with an extract. For example:
%sadd = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sadd3 = add i32 %a, %b
Here the add statement will be replaced by an extract.
When an overflow intrinsic follows a non-overflow instruction, a clone
of the intrinsic is inserted before the normal instruction, which makes
it the same as the previous case. Subsequent runs of GVN can then clean
up the duplicate instructions and insert the extract.
This fixes PR8817.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203553 91177308-0d34-0410-b5e6-96231b3b80d8
When the MOVBE instructions are available, use them for 16-bit endian
swapping as well as for 32 and 64 bit.
The patterns were already present on the instructions, but weren't being
matched because the operation was unconditionally marked to 'Expand.'
Change that to be conditional on whether the MOVBE instructions are
available. Use 'rolw' to implement the in-register version (32 and 64
bit have the dedicated 'bswap' instruction for that).
Patch by Louis Gerbarg <lgg@apple.com>.
rdar://15479984
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203524 91177308-0d34-0410-b5e6-96231b3b80d8
During LTO, user-supplied definitions of C library functions often
exist. -instcombine uses Module::getOrInsertFunction() to get a handle
on library functions (e.g., @puts, when optimizing @printf).
Previously, Module::getOrInsertFunction() would rename any matching
functions with local linkage, and create a new declaration. In LTO,
this is the opposite of desired behaviour, as it skips by the
user-supplied version of the library function and creates a new
undefined reference which the linker often cannot resolve.
After some discussing with Rafael on the list, it looks like it's
undesired behaviour. If a consumer actually *needs* this behaviour, we
should add new API with a more explicit name.
I added two testcases: one specifically for the -instcombine behaviour
and one for the LTO flow.
<rdar://problem/16165191>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203513 91177308-0d34-0410-b5e6-96231b3b80d8
the legalization cost must be included to get an accurate
estimation of the total cost of the scalarized vector.
The inaccurate cost triggered unprofitable SLP vectorization on
32-bit X86.
Summary:
Include legalization overhead when computing scalarization cost
Reviewers: hfinkel, nadav
CC: chandlerc, rnk, llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203509 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When the sample profiles include discriminator information,
use the discriminator values to distinguish instruction weights
in different basic blocks.
This modifies the BodySamples mapping to map <line, discriminator> pairs
to weights. Instructions on the same line but different blocks, will
use different discriminator values. This, in turn, means that the blocks
may have different weights.
Other changes in this patch:
- Add tests for positive values of line offset, discriminator and samples.
- Change data types from uint32_t to unsigned and int and do additional
validation.
Reviewers: chandlerc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203508 91177308-0d34-0410-b5e6-96231b3b80d8
optimize a call to a llvm intrinsic to something that invovles a call to a C
library call, make sure it sets the right calling convention on the call.
e.g.
extern double pow(double, double);
double t(double x) {
return pow(10, x);
}
Compiles to something like this for AAPCS-VFP:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%0 = call double @llvm.pow.f64(double 1.000000e+01, double %x)
ret double %0
}
declare double @llvm.pow.f64(double, double) #1
Simplify libcall (part of instcombine) will turn the above into:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%__exp10 = call double @__exp10(double %x) #1
ret double %__exp10
}
declare double @__exp10(double)
The pre-instcombine code works because calls to LLVM builtins are special.
Instruction selection will chose the right calling convention for the call.
However, the code after instcombine is wrong. The call to __exp10 will use
the C calling convention.
I can think of 3 options to fix this.
1. Make "C" calling convention just work since the target should know what CC
is being used.
This doesn't work because each function can use different CC with the "pcs"
attribute.
2. Have Clang add the right CC keyword on the calls to LLVM builtin.
This will work but it doesn't match the LLVM IR specification which states
these are "Standard C Library Intrinsics".
3. Fix simplify libcall so the resulting calls to the C routines will have the
proper CC keyword. e.g.
%__exp10 = call arm_aapcs_vfpcc double @__exp10(double %x) #1
This works and is the solution I implemented here.
Both solutions #2 and #3 would work. After carefully considering the pros and
cons, I decided to implement #3 for the following reasons.
1. It doesn't change the "spec" of the intrinsics.
2. It's a self-contained fix.
There are a couple of potential downsides.
1. There could be other places in the optimizer that is broken in the same way
that's not addressed by this.
2. There could be other calling conventions that need to be propagated by
simplify-libcall that's not handled.
But for now, this is the fix that I'm most comfortable with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203488 91177308-0d34-0410-b5e6-96231b3b80d8
The function was making too many assumptions about its input:
1. The NEON_VDUP optimisation was far too aggressive, assuming (I
think) that the input would always be BUILD_VECTOR.
2. We were treating most unknown concats as legal (by returning Op
rather than SDValue()). I think only concats of pairs of vectors are
actually legal.
http://llvm.org/PR19094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203450 91177308-0d34-0410-b5e6-96231b3b80d8
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203376 91177308-0d34-0410-b5e6-96231b3b80d8
This is the new idiom:
x<<(y&31) | x>>((0-y)&31)
which is recognized as:
x ROTL (y&31)
The change refines matchRotateSub. In
Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1), if Pos is
Pos' & (OpSize - 1) we can just use Pos' instead of Pos.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203315 91177308-0d34-0410-b5e6-96231b3b80d8
be split and the result type widened.
When the condition of a vselect has to be split it makes no sense widening the
vselect and thereby widening the condition. We end up in an endless loop of
widening (vselect result type) and splitting (condition mask type) doing this.
Instead, split both the condition and the vselect and widen the result.
I ran this over the test suite with i686 and mattr=+sse and saw no regressions.
Fixes PR18036.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203311 91177308-0d34-0410-b5e6-96231b3b80d8
These are sometimes created by the shrink to boolean optimization in the
globalopt pass.
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203280 91177308-0d34-0410-b5e6-96231b3b80d8
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
Patch by Manuel Jacob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203230 91177308-0d34-0410-b5e6-96231b3b80d8
Sequences of insertelement/extractelements are sometimes used to build
vectorsr; this code tries to put them back together into shuffles, but
could only produce a completely uniform shuffle types (<N x T> from two
<N x T> sources).
This should allow shuffles with different numbers of elements on the
input and output sides as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203229 91177308-0d34-0410-b5e6-96231b3b80d8
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203156 91177308-0d34-0410-b5e6-96231b3b80d8