promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199252 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow it to be called from target independent parts of the main
streamer that don't know if there is a registered target streamer or not. This
in turn will allow targets to perform extra actions at specified points in the
interface: add extra flags for some labels, extra work during finalization, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199174 91177308-0d34-0410-b5e6-96231b3b80d8
This commit teaches DAG to reassociate vector ops, which in turn enables
constant folding of vector op chains that appear later on during custom lowering
and DAG combine.
Reviewed by Andrea Di Biagio
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199135 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
This is a precursor to breaking the pass that computes the DominatorTree
apart from the concrete DominatorTree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199103 91177308-0d34-0410-b5e6-96231b3b80d8
support notionally const queries even though they may trigger DFS
numbering updates.
The updating of DFS numbers and tracking of slow queries do not mutate
the observable state of the domtree. They should be const to
differentiate them from the APIs which mutate the tree directly to do
incremental updates.
This will make it possible in a world where the DominatorTree is not
a pass but merely the result of running a pass to derive DominatorTree
from the base class as it was originally designed, removing a huge
duplication of API in DominatorTree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199101 91177308-0d34-0410-b5e6-96231b3b80d8
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
style, and remove some unnecessary comments (the code is perfectly
self-documenting here). Also clang-format the function declarations as
they wrap cleanly now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199084 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the old pass creation functionality to its own header and
updates the callers of that routine. Then it adds a new PM supporting
bitcode writer to the header file, and wires that up in the opt tool.
A test is added that round-trips code into bitcode and back out using
the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199078 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the legacy passes in terms of the new ones. It adds
basic testing using explicit runs of the passes. Next up will be wiring
the basic output mechanism of opt up when the new pass manager is
engaged unless bitcode writing is requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199049 91177308-0d34-0410-b5e6-96231b3b80d8
through being editted, and I forgot to delete it before committing.
What's more awesome is that it compiles cleanly!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199048 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing was using the ability of the pass to delete the raw_ostream it
printed to, and nothing was trying to pass it a pointer to the
raw_ostream. Also, the function variant had a different order of
arguments from all of the others which was just really confusing. Now
the interface accepts a reference, doesn't offer to delete it, and uses
a consistent order. The implementation of the printing passes haven't
been updated with this simplification, this is just the API switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199044 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
mode that can be used to debug the execution of everything.
No support for analyses here, that will come later. This already helps
show parts of the opt commandline integration that isn't working. Tests
of that will start using it as the bugs are fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199004 91177308-0d34-0410-b5e6-96231b3b80d8
An upcoming loop vectorizer commit will want to replace a SCEVUnknown(Value*)
by a SCEVConstant. This commit modifies the SCEVParameterRewriter to support
this. The SCEVParameterRewriter constructor can optionally specify to follow
this behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198949 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8