flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123969 91177308-0d34-0410-b5e6-96231b3b80d8
These functions not longer assert when passed 0, but simply return false instead.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123155 91177308-0d34-0410-b5e6-96231b3b80d8
when no virtual registers have been allocated.
It was only used to resize IndexedMaps, so provide an IndexedMap::resize()
method such that
Map.grow(MRI.getLastVirtReg());
can be replaced with the simpler
Map.resize(MRI.getNumVirtRegs());
This works correctly when no virtuals are allocated, and it bypasses the to/from
index conversions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123130 91177308-0d34-0410-b5e6-96231b3b80d8
physical register numbers.
This makes the hack used in LiveInterval official, and lets LiveInterval be
oblivious of stack slots.
The isPhysicalRegister() and isVirtualRegister() predicates don't know about
this, so when a variable may contain a stack slot, isStackSlot() should always
be tested first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123128 91177308-0d34-0410-b5e6-96231b3b80d8
of using a Location class with the same information.
When making a copy of a MachineOperand that was already stored in a
MachineInstr, it is necessary to clear the parent pointer on the copy. Otherwise
the register use-def lists become inconsistent.
Add MachineOperand::clearParent() to do that. An alternative would be a custom
MachineOperand copy constructor that cleared ParentMI. I didn't want to do that
because of the performance impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123109 91177308-0d34-0410-b5e6-96231b3b80d8
Provide MRI::getNumVirtRegs() and TRI::index2VirtReg() functions to allow
iteration over virtual registers without depending on the representation of
virtual register numbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123098 91177308-0d34-0410-b5e6-96231b3b80d8
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123044 91177308-0d34-0410-b5e6-96231b3b80d8
We were never generating any of these nodes with variable indices, and there
was one legalizer function asserting on a non-constant index. If we ever have
a need to support variable indices, we can add this back again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122993 91177308-0d34-0410-b5e6-96231b3b80d8
This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.
Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.
The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.
This is a work in progress and still not hooked up to RegAllocGreedy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122938 91177308-0d34-0410-b5e6-96231b3b80d8
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122832 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122113 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristics split around the largest loop where the current register may be
allocated without interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122106 91177308-0d34-0410-b5e6-96231b3b80d8
This is a three-way interval list intersection between a virtual register, a
live interval union, and a loop. It will be used to identify interference-free
loops for live range splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122034 91177308-0d34-0410-b5e6-96231b3b80d8
A MachineLoopRange contains the intervals of slot indexes covered by the blocks
in a loop. This representation of the loop blocks is more efficient to compare
against interfering registers during register coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121917 91177308-0d34-0410-b5e6-96231b3b80d8
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121274 91177308-0d34-0410-b5e6-96231b3b80d8
This new register allocator is initially identical to RegAllocBasic, but it will
receive all of the tricks that RegAllocBasic won't get.
RegAllocGreedy will eventually replace linear scan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121234 91177308-0d34-0410-b5e6-96231b3b80d8
Scan the MachineFunction for DBG_VALUE instructions, and replace them with a
data structure similar to LiveIntervals. The live range of a DBG_VALUE is
determined by propagating it down the dominator tree until a new DBG_VALUE is
found. When a DBG_VALUE lives in a register, its live range is confined to the
live range of the register's value.
LiveDebugVariables runs before coalescing, so DBG_VALUEs are not artificially
extended when registers are joined.
The missing half will recreate DBG_VALUE instructions from the intervals when
register allocation is complete.
The pass is disabled by default. It can be enabled with the temporary command
line option -live-debug-variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120636 91177308-0d34-0410-b5e6-96231b3b80d8
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120501 91177308-0d34-0410-b5e6-96231b3b80d8