on things not being marked as either custom or legal, but we now do
custom lowering of more VSELECT nodes. To cope with this, manually
replicate the legality tests here. These have to stay in sync with the
set of tests used in the custom lowering of VSELECT.
Ideally, we wouldn't do any of this combine-based-legalization when we
have an actual custom legalization step for VSELECT, but I'm not going
to be able to rewrite all of that today.
I don't have a test case for this currently, but it was found when
compiling a number of the test-suite benchmarks. I'll try to reduce
a test case and add it.
This should at least fix the test-suite fallout on build bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229844 91177308-0d34-0410-b5e6-96231b3b80d8
lowering paths. I'm going to be leveraging this to simplify a lot of the
overly complex lowering of v8 and v16 shuffles in pre-SSSE3 modes.
Sadly, this isn't profitable on v4i32 and v2i64. There, the float and
double blending instructions for pre-SSE4.1 are actually pretty good,
and we can't beat them with bit math. And once SSE4.1 comes around we
have direct blending support and this ceases to be relevant.
Also, some of the test cases look odd because the domain fixer
canonicalizes these to floating point domain. That's OK, it'll use the
integer domain when it matters and some day I may be able to update
enough of LLVM to canonicalize the other way.
This restores almost all of the regressions from teaching x86's vselect
lowering to always use vector shuffle lowering for blends. The remaining
problems are because the v16 lowering path is still doing crazy things.
I'll be re-arranging that strategy in more detail in subsequent commits
to finish recovering the performance here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229836 91177308-0d34-0410-b5e6-96231b3b80d8
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.
However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.
Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).
This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!
There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229835 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229831 91177308-0d34-0410-b5e6-96231b3b80d8
For projects depending on LLVM, I find it very useful to combine a
release-no-asserts build of LLVM with a debug+asserts build of the dependent
project. The motivation is that when developing a dependent project, you are
debugging that project itself, not LLVM. In my usecase, a significant part of
the runtime is spent in LLVM optimization passes, so I would like to build LLVM
without assertions to get the best performance from this combination.
Currently, `lib/Support/Debug.cpp` changes the set of symbols it provides
depending on NDEBUG, while `include/llvm/Support/Debug.h` requires extra
symbols when NDEBUG is not defined. Thus, it is not possible to enable
assertions in an external project that uses facilities of `Debug.h`.
This patch changes `Debug.cpp` and `Valgrind.cpp` to always define the symbols
that other code may depend on when #including LLVM headers without NDEBUG.
http://reviews.llvm.org/D7662
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229819 91177308-0d34-0410-b5e6-96231b3b80d8
The RCIdentity root ("Reference Count Identity Root") of a value V is a
dominating value U for which retaining or releasing U is equivalent to
retaining or releasing V. In other words, ARC operations on V are
equivalent to ARC operations on U.
This is a useful property to ascertain since we can use this in the ARC
optimizer to make it easier to match up ARC operations by always mapping
ARC operations to RCIdentityRoots instead of pointers themselves. Then
we perform pairing of retains, releases which are applied to the same
RCIdentityRoot.
In general, the two ways that we see RCIdentical values in ObjC are via:
1. PointerCasts
2. Forwarding Calls that return their argument verbatim.
As such in ObjC, two RCIdentical pointers must always point to the same
memory location.
Previously this concept was implicit in the code and various methods
that dealt with this concept were given functional names that did not
conform to any name in the "ARC" model. This often times resulted in
code that was hard for the non-ARC acquanted to understand resulting in
unhappiness and confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229796 91177308-0d34-0410-b5e6-96231b3b80d8
The main method of ObjCARCContract is really large and busy. By refactoring this
out, it becomes easier to reason about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229794 91177308-0d34-0410-b5e6-96231b3b80d8
Follow-up to r229740, which removed `DITemplate*::getContext()` after my
upgrade script revealed that scopes are always `nullptr` for template
parameters. This is the other shoe: drop `scope:` from
`MDTemplateParameter` and its two subclasses. (Note: a bitcode upgrade
would be pointless, since the hierarchy hasn't been moved into place.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229791 91177308-0d34-0410-b5e6-96231b3b80d8
accordingly. This changes the constructors of a number of classes
that don't need to know the subtarget's 64-bitness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229787 91177308-0d34-0410-b5e6-96231b3b80d8
This involved moving two non-subtarget dependent features (64-bitness
and the driver interface) to the NVPTX target machine and updating
the uses (or migrating around the subtarget use for ease of review).
Otherwise use the cached subtarget or create a default subtarget
based on the TargetMachine cpu and feature string for the module
level assembler emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229785 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that `count: -1` is a special value indicating an empty
array, such as `Values` in:
struct T {
unsigned Count;
int Values[];
};
Handle it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229769 91177308-0d34-0410-b5e6-96231b3b80d8
This tests the simple resume instruction elimination logic that we have
before making some changes to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229768 91177308-0d34-0410-b5e6-96231b3b80d8
VOP2 declares vsrc1, but VOP3 declares src1.
We can't use the same "ins" if the operands have different names in VOP2
and VOP3 encodings.
This fixes a hang in geometry shaders which spill M0 on VI.
(BTW it doesn't look like M0 needs spilling and the spilling seems
duplicated 3 times)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229752 91177308-0d34-0410-b5e6-96231b3b80d8
Put the name before the value in assembly for `MDEnum`. While working
on the testcase upgrade script for the new hierarchy, I noticed that it
"looks nicer" to have the name first, since it lines the names up in the
(somewhat typical) case that they have a common prefix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229747 91177308-0d34-0410-b5e6-96231b3b80d8
Add `replaceElements()`, `replaceVTableHolder()`, and
`replaceTemplateParams()` to `MDCompositeTypeBase`. Included an
assertion in `replaceElements()` to match the one in
`DICompositeType::replaceArrays()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229744 91177308-0d34-0410-b5e6-96231b3b80d8
The scope/context is always the compile unit, which we replace with
`nullptr` anyway (via `getNonCompileUnitScope()`). Drop it explicitly.
I noticed this field was always null while writing testcase upgrade
scripts to transition to the new hierarchy. Seems wasteful to
transition it over if it's already out-of-use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229740 91177308-0d34-0410-b5e6-96231b3b80d8