Avoid interleaving fprintf(stderr,...) and outs() << ...;
Also add a column to show "bytes-per" for each record.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163240 91177308-0d34-0410-b5e6-96231b3b80d8
Since TOC is just defined for PPC64, move its definition to PPC64 td file.
Patch by Adhemerval Zanella.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163234 91177308-0d34-0410-b5e6-96231b3b80d8
Previous patch accidentally decided it couldn't convert a VFP to a
NEON instruction after it had already destroyed the old one. Not a
good move.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163230 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure to return a pointer into the target memory, not the local memory.
Often they are the same, but we can't assume that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163217 91177308-0d34-0410-b5e6-96231b3b80d8
Simulate a remote target address space by allocating a seperate chunk of
memory for the target and re-mapping section addresses to that prior to
execution. Later we'll want to have a truly remote process, but for now
this gets us closer to being able to test the remote target
functionality outside LLDB.
rdar://12157052
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163216 91177308-0d34-0410-b5e6-96231b3b80d8
It relies on clear() being fast and the cache rarely has more than 1 or 2
elements, so give it an inline capacity and always shrink it back down in case
it grows. DenseMap will grow to 64 buckets which makes clear() a lot slower.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163215 91177308-0d34-0410-b5e6-96231b3b80d8
subreg_hireg of register pair Rp.
* lib/Target/Hexagon/HexagonPeephole.cpp(PeepholeDoubleRegsMap): New
DenseMap similar to PeepholeMap that additionally records subreg info
too.
(runOnMachineFunction): Record information in PeepholeDoubleRegsMap
and copy propagate the high sub-reg of Rp0 in Rp1 = lsr(Rp0, #32) to
the instruction Rx = COPY Rp1:logreg_subreg.
* test/CodeGen/Hexagon/remove_lsr.ll: New test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163214 91177308-0d34-0410-b5e6-96231b3b80d8
pointers-to-strong-pointers may be in play. These can lead to retains and
releases happening in unstructured ways, foiling the optimizer. This fixes
rdar://12150909.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163180 91177308-0d34-0410-b5e6-96231b3b80d8
Implicit uses can be dynamically tied to defs. This will soon be used
for predicated instructions on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163177 91177308-0d34-0410-b5e6-96231b3b80d8
implementation does not co-exist well with how the sideeffect and alignstack
attributes are handled. The reverts r161641.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163174 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't seem ideal, perhaps we could just keep the llvm_site_cfg and have
other config (clang and clang-tools-extra) derive their site_cfg from that.
Suggestions/complaints/ideas welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163171 91177308-0d34-0410-b5e6-96231b3b80d8
Also a few minor changes:
- use pre-inc instead of post-inc
- use isa instead of dyn_cast
- 80 col
- trailing spaces
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163164 91177308-0d34-0410-b5e6-96231b3b80d8
The MachineOperand::TiedTo field was maintained, but not used.
This patch enables it in isRegTiedToDefOperand() and
isRegTiedToUseOperand() which are the actual functions use by the
register allocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163153 91177308-0d34-0410-b5e6-96231b3b80d8
After much agonizing, use a full 4 bits of precious MachineOperand space
to encode this. This uses existing padding, and doesn't grow
MachineOperand beyond its current 32 bytes.
This allows tied defs among the first 15 operands on a normal
instruction, just like the current MCInstrDesc constraint encoding.
Inline assembly needs to be able to tie more than the first 15 operands,
and gets special treatment.
Tied uses can appear beyond 15 operands, as long as they are tied to a
def that's in range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163151 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale: For each preprocessor macro, either the definedness is what's
meaningful, or the value is what's meaningful, or both. If definedness is
meaningful, we should use #ifdef. If the value is meaningful, we should use
and #ifdef interchangeably for the same macro, seems ugly to me, even if
undefined macros are zero if used.
This also has the benefit that including an LLVM header doesn't prevent
you from compiling with -Wundef -Werror.
Patch by John Garvin!
<rdar://problem/12189979>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163148 91177308-0d34-0410-b5e6-96231b3b80d8