This is preliminary work to fix type unit file strings so they appear in
their originating CU's line table - but it's also just good/simple
cleanup, so I'm committing it ahead of time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201195 91177308-0d34-0410-b5e6-96231b3b80d8
We used to be pretty vague about what debug entities were what, with
many conditionals to silently drop/skip/accept things. These don't seem
to be relevant anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201194 91177308-0d34-0410-b5e6-96231b3b80d8
* CPRCs may be allocated to co-processor registers or the stack – they may never be allocated to core registers
* When a CPRC is allocated to the stack, all other VFP registers should be marked as unavailable
The difference is only noticeable in rare cases where there are a large number of floating point arguments (e.g.
7 doubles + additional float, double arguments). Although it's probably still better to avoid vmov as it can cause
stalls in some older ARM cores. The other, more subtle benefit, is to minimize difference between the various
calling conventions.
rdar://16039676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201193 91177308-0d34-0410-b5e6-96231b3b80d8
Debug info: Emit values in subregisters that do not have a separate
DWARF register number by emitting a super-register + DW_OP_bit_piece.
This is necessary because on x86_64, there are no DWARF register numbers
for i386-style subregisters.
Fixes a bunch of FIXMEs.
rdar://problem/16015314
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201190 91177308-0d34-0410-b5e6-96231b3b80d8
This comes up in empty files or files containing #file directives that
never reference the actual source file name. Came up in a small test of
line tables I was playing with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201187 91177308-0d34-0410-b5e6-96231b3b80d8
These tests were unnecessarily sensitive to the presence and ordering of
elements in the line table file_names list which will break on a future
change I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201185 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF register number by emitting a super-register + DW_OP_bit_piece.
This is necessary because on x86_64, there are no DWARF register numbers
for i386-style subregisters.
Fixes a bunch of FIXMEs.
rdar://problem/16015314
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201180 91177308-0d34-0410-b5e6-96231b3b80d8
sections. The call to data.getUnsigned(&Offset, AddressSize) only
increments Offset if the read succeeds, which will result in an infinite
loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201179 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a slightly overzealous destination register restriction for the
'without .w' alias. Add some explicit testcases.
rdar://16033140
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201173 91177308-0d34-0410-b5e6-96231b3b80d8
BUILD_VECTOR nodes, e.g.:
(concat_vectors (BUILD_VECTOR a1, a2, a3, a4), (BUILD_VECTOR b1, b2, b3, b4))
->
(BUILD_VECTOR a1, a2, a3, a4, b1, b2, b3, b4)
This fixes an issue with AVX, where a sequence was not recognized as a 256-bit
vbroadcast due to the concat_vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201158 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR18753 and PR18782.
This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.
However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.
It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201148 91177308-0d34-0410-b5e6-96231b3b80d8
Xcore target ABI requires const data that is externally visible
to be handled differently if it has C-language linkage rather than
C++ language linkage.
Clang now emits ".cp.rodata" section information.
All other externally visible constant data will be placed in the DP section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201144 91177308-0d34-0410-b5e6-96231b3b80d8
profitability check due to some other checks in the addressing
mode matcher. I.e., test case for commit r201121.
<rdar://problem/16020230>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201132 91177308-0d34-0410-b5e6-96231b3b80d8
uintptr_t. An unsigned could overflow for large sections.
No test case - anything big enough to overflow an unsigned is going to take an
appreciable time to zero when the test passes.
The choice of uintptr_t was made to match the RTDyldMemoryManager APIs, but
these should probably be hardcoded to uint64_ts: It is legitimate to JIT for
64-bit targets from a 32-bit host/compiler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201127 91177308-0d34-0410-b5e6-96231b3b80d8
The addressing mode matcher checks at some point the profitability of folding an
instruction into the addressing mode. When the instruction to be folded has
several uses, it checks that the instruction can be folded in each use.
To do so, it creates a new matcher for each use and check if the instruction is
in the list of the matched instructions of this new matcher.
The new matchers may promote some instructions and this has to be undone to keep
the state of the original matcher consistent.
A test case will follow.
<rdar://problem/16020230>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201121 91177308-0d34-0410-b5e6-96231b3b80d8
These are self-contained in functionality so it makes sense to separate them,
as opt.cpp has grown quite big already.
Following Eric's suggestions, if this code is ever deemed useful outside of
tools/opt, it will make sense to move it to one of the LLVM libraries like IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201116 91177308-0d34-0410-b5e6-96231b3b80d8
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201114 91177308-0d34-0410-b5e6-96231b3b80d8
A const ObjectFile needs to be able to provide its name. For an IRObjectFile,
that means being able to call the mangler. Since each IRObjectFile can have
a different mangling, it is natural for them to contain a Mangler which is
therefore also const.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201113 91177308-0d34-0410-b5e6-96231b3b80d8
The crux of the issue is that LCSSA doesn't preserve stateful alias
analyses. Before r200067, LICM didn't cause LCSSA to run in the LTO pass
manager, where LICM runs essentially without any of the other loop
passes. As a consequence the globalmodref-aa pass run before that loop
pass manager was able to survive the loop pass manager and be used by
DSE to eliminate stores in the function called from the loop body in
Adobe-C++/loop_unroll (and similar patterns in other benchmarks).
When LICM was taught to preserve LCSSA it had to require it as well.
This caused it to be run in the loop pass manager and because it did not
preserve AA, the stateful AA was lost. Most of LLVM's AA isn't stateful
and so this didn't manifest in most cases. Also, in most cases LCSSA was
already running, and so there was no interesting change.
The real kicker is that LCSSA by its definition (injecting PHI nodes
only) trivially preserves AA! All we need to do is mark it, and then
everything goes back to working as intended. It probably was blocking
some other weird cases of stateful AA but the only one I have is
a 1000-line IR test case from loop_unroll, so I don't really have a good
test case here.
Hopefully this fixes the regressions on performance that have been seen
since that revision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201104 91177308-0d34-0410-b5e6-96231b3b80d8
DS instructions that access local memory can only uses addresses that
are less than or equal to the value of M0. When M0 is uninitialized,
then we experience undefined behavior.
This patch also changes the behavior to emit S_WQM_B64 on pixel shaders
no matter what kind of DS instruction is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201097 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't change any functionality, since we only have two shader
types (compute and pixel) that use local memory. We're just changing
the logic to match the documentation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201096 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201093 91177308-0d34-0410-b5e6-96231b3b80d8
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201089 91177308-0d34-0410-b5e6-96231b3b80d8