This change implements support for lowering of the gc.relocates tied to the invoke statepoint.
This is acomplished by storing frame indices of the lowered values in "StatepointRelocatedValues" map inside FunctionLoweringInfo instead of storing them in per-basic block structure StatepointLowering.
After this change StatepointLowering is used only during "LowerStatepoint" call and it is not necessary to store it as a field in SelectionDAGBuilder anymore.
Differential Revision: http://reviews.llvm.org/D7798
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237786 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds a new GC strategy for supporting the CoreCLR runtime.
This strategy is currently identical to Statepoint-example GC,
but is necessary for several upcoming changes specific to CoreCLR, such as:
1. Base-pointers not explicitly reported for interior pointers
2. Different format for stack-map encoding
3. Location of Safe-point polls: polls are only needed before loop-back edges and before tail-calls (not needed at function-entry)
4. Runtime specific handshake between calls to managed/unmanaged functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237753 91177308-0d34-0410-b5e6-96231b3b80d8
The incremental buildbots entered a pass-fail cycle where during the fail
cycle one of the tests from this commit fails for an unknown reason. I
have reverted this commit and will investigate the cause of this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237730 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is the initial commit for the MIR serialization project.
It creates a new library under CodeGen called 'MIR'. This new
library adds a new machine function pass that prints out the LLVM IR
using the MIR format. This pass is then added as a last pass when a
'stop-after' option is used in llc. The new library adds the initial
functionality for parsing of MIR files as well. This commit also
extends the llc tool so that it can recognize and parse MIR input files.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun, Philip Reames
Differential Revision: http://reviews.llvm.org/D9616
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237708 91177308-0d34-0410-b5e6-96231b3b80d8
This cleans up the FoldConstantArithmetic code by factoring out the case
of two ConstantSDNodes into an own function. This avoids unnecessary
complexity for many callers who already have ConstantSDNode arguments.
This also avoids an intermeidate SmallVector datastructure and a loop
over that datastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237651 91177308-0d34-0410-b5e6-96231b3b80d8
This was previously returning int. However there are no negative opcode
numbers and more importantly this was needlessly different from
MCInstrDesc::getOpcode() (which even is the value returned here) and
SDValue::getOpcode()/SDNode::getOpcode().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237611 91177308-0d34-0410-b5e6-96231b3b80d8
This adds new SDNodes for signed/unsigned min/max. These nodes are built from
select/icmp pairs matched at SDAGBuilder stage.
This patch adds the nodes, as well as legalization support and sets them to
be "expand" for all targets.
NFC for now; this will be tested when I switch AArch64 to using these new
nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237423 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of doing that, create a temporary copy of MCTargetOptions and reset its
SanitizeAddress field based on the function's attribute every time an InlineAsm
instruction is emitted in AsmPrinter::EmitInlineAsm.
This is part of the work to remove TargetMachine::resetTargetOptions (the FIXME
added to TargetMachine.cpp in r236009 explains why this function has to be
removed).
Differential Revision: http://reviews.llvm.org/D9570
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237412 91177308-0d34-0410-b5e6-96231b3b80d8
Several updates for [DebugInfo] Add debug locations to constant SD nodes (r235989).
Includes:
* re-enabling the change (disabled recently);
* missing change for FP constants;
* resetting debug location of constant node if it's used more than at one place
to prevent emission of wrong locations in case of coalesced constants;
* a couple of additional tests.
Now all look ups in CSEMap are wrapped by additional method.
Comment in D9084 suggests that debug locations aren't useful for "target constants",
so there might be one more change related to this API (namely, dropping debug
locations for getTarget*Constant methods).
Differential Revision: http://reviews.llvm.org/D9604
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237237 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237214 91177308-0d34-0410-b5e6-96231b3b80d8
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
This is a less ambitious version of:
http://reviews.llvm.org/rL236546
because that was reverted in:
http://reviews.llvm.org/rL236600
because it caused memory corruption that wasn't related to FMF
but was actually due to making nodes with 2 operands derive from a
plain SDNode rather than a BinarySDNode.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237046 91177308-0d34-0410-b5e6-96231b3b80d8
The code that builds the dependence graph assumes that two PseudoSourceValues
don't alias. In a tail calling function two FixedStackObjects might refer to the
same location. Worse 'immutable' fixed stack objects like function arguments are
not immutable and will be clobbered.
Change this so that a load from a FixedStackObject is not invariant in a tail
calling function and don't return a PseudoSourceValue for an instruction in tail
calling functions when building the dependence graph so that we handle function
arguments conservatively.
Fix for PR23459.
rdar://20740035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236916 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236888 91177308-0d34-0410-b5e6-96231b3b80d8
Will be re-enabled with missing changes for ConstantFPSDNode and
fixes for wrong locations due to constant coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236758 91177308-0d34-0410-b5e6-96231b3b80d8
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
There are 2 structural changes here:
1. The main diff is that we're preparing to extend the optimization
flags to affect more than just binary SDNodes. Eg, IR intrinsics
( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes
that don't even exist in IR such as FMA, FNEG, etc.
2. The other change is that we're actually copying the FP fast-math-flags
from the IR instructions to SDNodes.
Differential Revision: http://reviews.llvm.org/D8900
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236546 91177308-0d34-0410-b5e6-96231b3b80d8
Note, this is a reapplication of r236515 with a fix to not assert on non-register operands, but instead only handle them until the subsequent commit. Original commit message follows.
The code was basically the same here already. Just added an out parameter for a vector of seen defs so that UpdatePredRedefs can call StepForward first, then do its own post processing on the seen defs.
Will be used in the next commit to also handle regmasks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236538 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 963cdbccf6e5578822836fd9b2ebece0ba9a60b7 (ie r236514)
This is to get the bots green while i investigate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236518 91177308-0d34-0410-b5e6-96231b3b80d8
The code was basically the same here already. Just added an out parameter for a vector of seen defs so that UpdatePredRedefs can call StepForward first, then do its own post processing on the seen defs.
Will be used in the next commit to also handle regmasks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236514 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236507 91177308-0d34-0410-b5e6-96231b3b80d8
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236120 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step to using the IR-level floating-point fast-math-flags in the SDAG (D8900).
In this patch, we introduce the optimization flags as their own struct. As noted in the TODO comment,
we should eventually share this data between the IR passes and the backend.
We also switch the existing nsw / nuw / exact bit functionality of the BinaryWithFlagsSDNode class to
use the new struct.
The tradeoff is that instead of using the free but limited space of SDNode's SubclassData, we add a
data member to the subclass. This means we don't have to repeat all of the get/set methods per flag,
but we're potentially adding size to all nodes of this subclassi type.
In practice on 64-bit systems (measured on Linux and MacOS X), there is no size difference between an
SDNode and BinaryWithFlagsSDNode after this change: they're both 80 bytes. This means that we had at
least one free byte to play with due to struct alignment.
Differential Revision: http://reviews.llvm.org/D9325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235997 91177308-0d34-0410-b5e6-96231b3b80d8
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235989 91177308-0d34-0410-b5e6-96231b3b80d8
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235977 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces an intrinsic called llvm.eh.exceptioncode. It is lowered
by copying the EAX value live into whatever basic block it is called
from. Obviously, this only works if you insert it late during codegen,
because otherwise mid-level passes might reschedule it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235768 91177308-0d34-0410-b5e6-96231b3b80d8
AsmPrinter owns the OutStreamer, so an owning pointer makes sense here. Using a
reference for this is crufty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235752 91177308-0d34-0410-b5e6-96231b3b80d8