Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200892 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. Updated loops from:
for (I = scc_begin(), E = scc_end(); I != E; ++I)
to:
for (I = scc_begin(); !I.isAtEnd(); ++I)
for teh win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200789 91177308-0d34-0410-b5e6-96231b3b80d8
cost so that they don't impact the vector bonus. Fundamentally, counting
unsimplified instructions is just *wrong*; it will continue to introduce
instability as things which do not generate code bizarrely impact
inlining. For example, sufficiently nested inlined functions could turn
off the vector bonus with lifetime markers just like the debug
intrinsics do. =/
This is a short-term tactical fix. Long term, I think we need to remove
the vector bonus entirely. That's a separate patch and discussion
though.
The patch to fix this provided by Dario Domizioli. I've added some
comments about the planned direction and used a heavily pruned form of
debug info intrinsics for the test case. While this debug info doesn't
work or "do" anything useful, it lets us easily test all manner of
interference easily, and I suspect this will not be the last time we
want to craft a pattern where debug info interferes with the inliner in
a problematic way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200609 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't set errno, so this should be OK.
Also update the documentation to explicitly state
that errno are not set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200501 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200281 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, this in turn led to some lower quality SCEVs due to some different paths through expression simplification, so add getUDivExactExpr and use it. This fixes all instances of the problems that I found, but we can make that function smarter as necessary.
Merge test "xor-and.ll" into "and-xor.ll" since I needed to update it anyways. Test 'nsw-offset.ll' analyzes a little deeper, %n now gets a scev in terms of %no instead of a SCEVUnknown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200203 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200058 91177308-0d34-0410-b5e6-96231b3b80d8
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200034 91177308-0d34-0410-b5e6-96231b3b80d8
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200022 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
Missed this when adding the skeleton analysis. Caught by a build break
in the next patch I'm working on when trying to use the analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198556 91177308-0d34-0410-b5e6-96231b3b80d8
cycles
This allows the value equality check to work even if we don't have a dominator
tree. Also add some more comments.
I was worried about compile time impacts and did not implement reachability but
used the dominance check in the initial patch. The trade-off was that the
dominator tree was required.
The llvm utility function isPotentiallyReachable cuts off the recursive search
after 32 visits. Testing did not show any compile time regressions showing my
worries unjustfied.
No compile time or performance regressions at O3 -flto -mavx on test-suite +
externals.
Addresses review comments from r198290.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198400 91177308-0d34-0410-b5e6-96231b3b80d8
When there are cycles in the value graph we have to be careful interpreting
"Value*" identity as "value" equivalence. We interpret the value of a phi node
as the value of its operands.
When we check for value equivalence now we make sure that the "Value*" dominates
all cycles (phis).
%0 = phi [%noaliasval, %addr2]
%l = load %ptr
%addr1 = gep @a, 0, %l
%addr2 = gep @a, 0, (%l + 1)
store %ptr ...
Before this patch we would return NoAlias for (%0, %addr1) which is wrong
because the value of the load is from different iterations of the loop.
Tested on x86_64 -mavx at O3 and O3 -flto with no performance or compile time
regressions.
PR18068
radar://15653794
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198290 91177308-0d34-0410-b5e6-96231b3b80d8
IMHO At some point BasicBlock should be refactored along the lines of
MachineBasicBlock so that successors/weights are actually embedded within the
block. Now is not that time though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197303 91177308-0d34-0410-b5e6-96231b3b80d8
through an invoke instruction.
The original patch for this was written by Mark Seaborn, but I've
reworked his test case into the existing returns_twice test case and
implemented the fix by the prior refactoring to actually run the cost
analysis over invoke instructions, and then here fixing our detection of
the returns_twice attribute to work for both calls and invokes. We never
noticed because we never saw an invoke. =[
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197216 91177308-0d34-0410-b5e6-96231b3b80d8
handles terminator instructions.
The inline cost analysis inheritted some pretty rough handling of
terminator insts from the original cost analysis, and then made it much,
much worse by factoring all of the important analyses into a separate
instruction visitor. That instruction visitor never visited the
terminator.
This works fine for things like conditional branches, but for many other
things we simply computed The Wrong Value. First example are
unconditional branches, which should be free but were counted as full
cost. This is most significant for conditional branches where the
condition simplifies and folds during inlining. We paid a 1 instruction
tax on every branch in a straight line specialized path. =[
Oh, we also claimed that the unreachable instruction had cost.
But it gets worse. Let's consider invoke. We never applied the call
penalty. We never accounted for the cost of the arguments. Nope. Worse
still, we didn't handle the *correctness* constraints of not inlining
recursive invokes, or exception throwing returns_twice functions. Oops.
See PR18206. Sadly, PR18206 requires yet another fix, but this
refactoring is at least a huge step in that direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197215 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195722 91177308-0d34-0410-b5e6-96231b3b80d8
(except functions marked always_inline).
Functions with 'optnone' must also have 'noinline' so they don't get
inlined into any other function.
Based on work by Andrea Di Biagio.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195046 91177308-0d34-0410-b5e6-96231b3b80d8