If we create new intervals for a variable that is being spilled, then those new intervals are not guaranteed to also spill. This means that anything reading from the original spilling value might not get the correct value if spills were missed.
Fixes <rdar://problem/10546864>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146428 91177308-0d34-0410-b5e6-96231b3b80d8
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146026 91177308-0d34-0410-b5e6-96231b3b80d8
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144503 91177308-0d34-0410-b5e6-96231b3b80d8
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137123 91177308-0d34-0410-b5e6-96231b3b80d8
Remat during spilling triggers dead code elimination. If a phi-def
becomes unused, that may also cause live ranges to split into separate
connected components.
This type of splitting is different from normal live range splitting. In
particular, there may not be a common original interval.
When the split range is its own original, make sure that the new
siblings are also their own originals. The range being split cannot be
used as an original since it doesn't cover the new siblings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134413 91177308-0d34-0410-b5e6-96231b3b80d8
When an interfering live range ends at a dead slot index between two
instructions, make sure that the inserted copy instruction gets a slot index
after the dead ones. This makes it possible to avoid the interference.
Ideally, there shouldn't be interference ending at a deleted instruction, but
physical register coalescing can sometimes do that to sub-registers.
This fixes PR9823.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130687 91177308-0d34-0410-b5e6-96231b3b80d8
When DCE clones a live range because it separates into connected components,
make sure that the clones enter the same register allocator stage as the
register they were cloned from.
For instance, clones may be split even when they where created during spilling.
Other registers created during spilling are not candidates for splitting or even
(re-)spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128524 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction to be rematerialized may not be the one defining the register
that is being spilled. The traceSiblingValue() function sees through sibling
copies to find the remat candidate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128449 91177308-0d34-0410-b5e6-96231b3b80d8
I have convinced myself that it can only happen when a phi value dies. When it
happens, allocate new virtual registers for the components.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127827 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the allocator to free any resources used by the virtual register,
including physical register assignments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127560 91177308-0d34-0410-b5e6-96231b3b80d8
This will we used for keeping register allocator data structures up to date
while LiveRangeEdit is trimming live intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127300 91177308-0d34-0410-b5e6-96231b3b80d8
LiveRangeEdit::eliminateDeadDefs() will eventually be used by coalescing,
splitting, and spilling for dead code elimination. It can delete chains of dead
instructions as long as there are no dependency loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127287 91177308-0d34-0410-b5e6-96231b3b80d8
All registers created during splitting or spilling are assigned to the same
stack slot as the parent register.
When splitting or rematting, we may not spill at all. In that case the stack
slot is still assigned, but it will be dead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116546 91177308-0d34-0410-b5e6-96231b3b80d8
splitting or spillling, and to help with rematerialization.
Use LiveRangeEdit in InlineSpiller and SplitKit. This will eventually make it
possible to share remat code between InlineSpiller and SplitKit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116543 91177308-0d34-0410-b5e6-96231b3b80d8