This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
(Re-commit of r227728)
Differential Revision: http://reviews.llvm.org/D6789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227752 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
Differential Revision: http://reviews.llvm.org/D6789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227728 91177308-0d34-0410-b5e6-96231b3b80d8
A pass that adds random noops to X86 binaries to introduce diversity with the goal of increasing security against most return-oriented programming attacks.
Command line options:
-noop-insertion // Enable noop insertion.
-noop-insertion-percentage=X // X% of assembly instructions will have a noop prepended (default: 50%, requires -noop-insertion)
-max-noops-per-instruction=X // Randomly generate X noops per instruction. ie. roll the dice X times with probability set above (default: 1). This doesn't guarantee X noop instructions.
In addition, the following 'quick switch' in clang enables basic diversity using default settings (currently: noop insertion and schedule randomization; it is intended to be extended in the future).
-fdiversify
This is the llvm part of the patch.
clang part: D3393
http://reviews.llvm.org/D3392
Patch by Stephen Crane (@rinon)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225908 91177308-0d34-0410-b5e6-96231b3b80d8
Added RegOp2MemOpTable4 to transform 4th operand from register to memory in merge-masked versions of instructions.
Added lowering tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224516 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221708 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.
Added additional regression test case provided by Joerg Sonnenberger.
Differential Revision: http://reviews.llvm.org/D5818
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220239 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.
Differential Revision: http://reviews.llvm.org/D5701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219584 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
Make use of helper functions to simplify the branch and compare instruction
selection in FastISel. Also add test cases for compare and conditonal branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211077 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
According to Intel Software Optimization Manual on Silvermont in some cases LEA
is better to be replaced with ADD instructions:
"The rule of thumb for ADDs and LEAs is that it is justified to use LEA
with a valid index and/or displacement for non-destructive destination purposes
(especially useful for stack offset cases), or to use a SCALE.
Otherwise, ADD(s) are preferable."
Differential Revision: http://reviews.llvm.org/D3826
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209198 91177308-0d34-0410-b5e6-96231b3b80d8
TargetInstrInfo::findCommutedOpIndices to enable VFMA*231 commutation, rather
than abusing commuteInstruction.
Thanks very much for the suggestion guys!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205489 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
X86BaseInfo.h defines an enum for the offset of each operand in a memory operand
sequence. Some code uses it and some does not. This patch replaces (hopefully)
all remaining locations where an integer literal was used instead of this enum.
No functionality change intended.
Reviewers: nadav
CC: llvm-commits, t.p.northover
Differential Revision: http://llvm-reviews.chandlerc.com/D3108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204158 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is needed to break false dependencies. Without it, unlucky
register assignment can result in wild (5x) swings in
performance. This pass was trying to handle AVX but not getting it
right. AVX doesn't have partial register defs, it has unused register
reads in which the high bits of a source operand are copied into the
unused bits of the dest.
Fixing this requires conservative liveness analysis. This is awkard
because the pass already has its own pseudo-liveness. However, proper
liveness is expensive, and we would like to use a generic utility to
compute it. The fix only invokes liveness on-demand. It is rare to
detect a case that needs undef-read dependence breaking, but when it
happens, it can be needed many times within a very large block.
I think the existing heuristic which uses a register window of 16 is
too conservative for loop-carried false dependencies. If the loop is a
reduction. The out-of-order engine may be able to execute several loop
iterations in parallel. However, I'll leave this tuning exercise for
next time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192635 91177308-0d34-0410-b5e6-96231b3b80d8
This is an awful implementation of the target hook. But we don't have
abstractions yet for common machine ops, and I don't see any quick way
to make it table-driven.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184664 91177308-0d34-0410-b5e6-96231b3b80d8
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184067 91177308-0d34-0410-b5e6-96231b3b80d8
Previously LEA64_32r went through virtually the entire backend thinking it was
using 32-bit registers until its blissful illusions were cruelly snatched away
by MCInstLower and 64-bit equivalents were substituted at the last minute.
This patch makes it behave normally, and take 64-bit registers as sources all
the way through. Previous uses (for 32-bit arithmetic) are accommodated via
SUBREG_TO_REG instructions which make the types and classes agree properly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183693 91177308-0d34-0410-b5e6-96231b3b80d8
- Rewrite/merge pseudo-atomic instruction emitters to address the
following issue:
* Reduce one unnecessary load in spin-loop
previously the spin-loop looks like
thisMBB:
newMBB:
ld t1 = [bitinstr.addr]
op t2 = t1, [bitinstr.val]
not t3 = t2 (if Invert)
mov EAX = t1
lcs dest = [bitinstr.addr], t3 [EAX is implicit]
bz newMBB
fallthrough -->nextMBB
the 'ld' at the beginning of newMBB should be lift out of the loop
as lcs (or CMPXCHG on x86) will load the current memory value into
EAX. This loop is refined as:
thisMBB:
EAX = LOAD [MI.addr]
mainMBB:
t1 = OP [MI.val], EAX
LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
JNE mainMBB
sinkMBB:
* Remove immopc as, so far, all pseudo-atomic instructions has
all-register form only, there is no immedidate operand.
* Remove unnecessary attributes/modifiers in pseudo-atomic instruction
td
* Fix issues in PR13458
- Add comprehensive tests on atomic ops on various data types.
NOTE: Some of them are turned off due to missing functionality.
- Revise tests due to the new spin-loop generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164281 91177308-0d34-0410-b5e6-96231b3b80d8
Add more comments and use early returns to reduce nesting in isLoadFoldable.
Also disable folding for V_SET0 to avoid introducing a const pool entry and
a const pool load.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161207 91177308-0d34-0410-b5e6-96231b3b80d8
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
This patch is a rework of r160919 and was tested on clang self-host on my local
machine.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161152 91177308-0d34-0410-b5e6-96231b3b80d8
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160919 91177308-0d34-0410-b5e6-96231b3b80d8
For each Cmp, we check whether there is an earlier Sub which make Cmp
redundant. We handle the case where SUB operates on the same source operands as
Cmp, including the case where the two source operands are swapped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159838 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the TII hooks needed by EarlyIfConversion to create cmov
instructions and estimate their latency.
Early if-conversion is still not enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159695 91177308-0d34-0410-b5e6-96231b3b80d8
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158122 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157831 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157755 91177308-0d34-0410-b5e6-96231b3b80d8
I disabled FMA3 autodetection, since the result may differ from expected for some benchmarks.
I added tests for GodeGen and intrinsics.
I did not change llvm.fma.f32/64 - it may be done later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157737 91177308-0d34-0410-b5e6-96231b3b80d8
Two new TargetInstrInfo hooks lets the target tell ExecutionDepsFix
about instructions with partial register updates causing false unwanted
dependencies.
The ExecutionDepsFix pass will break the false dependencies if the
updated register was written in the previoius N instructions.
The small loop added to sse-domains.ll runs twice as fast with
dependency-breaking instructions inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144602 91177308-0d34-0410-b5e6-96231b3b80d8
This also makes it possible to reduce the number of pseudo instructions
and get rid of the encoding information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140776 91177308-0d34-0410-b5e6-96231b3b80d8
I am going to unify the SSEDomainFix and NEONMoveFix passes into a
single target independent pass. They are essentially doing the same
thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140652 91177308-0d34-0410-b5e6-96231b3b80d8