argpromote to avoid invalidating an iterator. This fixes PR4977.
All clang tests now pass with expensive checking (on my system
at least).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81843 91177308-0d34-0410-b5e6-96231b3b80d8
within the notional bounds of the static type of the getelementptr (which
is not the same as "inbounds") from GlobalOpt into a utility routine,
and use it in ConstantFold.cpp to check whether there are any mis-behaved
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81478 91177308-0d34-0410-b5e6-96231b3b80d8
compile-time constant integers or that are out of bounds for their
corresponding static array types. These can cause aliasing that
GlobalOpt assumes won't happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81165 91177308-0d34-0410-b5e6-96231b3b80d8
an aggregate store overlapping a different aggregate store, despite
the stores having distinct addresses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81164 91177308-0d34-0410-b5e6-96231b3b80d8
is missing the inbounds flag. This is slightly conservative, but it
avoids problems with two constants pointing to the same address but
getting distinct entries in the Memory DenseMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81163 91177308-0d34-0410-b5e6-96231b3b80d8
for sanity. This didn't turn up any bugs.
Change CallGraphNode to maintain its "callsite" information in the
call edges list as a WeakVH instead of as an instruction*. This fixes
a broad class of dangling pointer bugs, and makes CallGraph have a number
of useful invariants again. This fixes the class of problem indicated
by PR4029 and PR3601.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80663 91177308-0d34-0410-b5e6-96231b3b80d8
instead of CallGraphNode*'s. This also papers over a callgraph
problem where a pass (in this case, MemCpyOpt) introduces a new
function into the module (llvm.memset.i64) but doesn't add it to
the call graph (nor should it, since it is a function pass).
While it might be a good idea for MemCpyOpt to not synthesize
functions in a runOnFunction(), there is no need for FunctionAttrs
to be boneheaded, so fix it there. This fixes an assertion building
176.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80535 91177308-0d34-0410-b5e6-96231b3b80d8
indirect function pointer, inline it, then go to delete the body.
The problem is that the callgraph had other references to the function,
though the inliner had no way to know it, so we got a dangling pointer
and an invalid iterator out of the deal.
The fix to this is pretty simple: stop the inliner from deleting the
function by knowing that there are references to it. Do this by making
CallGraphNodes contain a refcount. This requires moving deletion of
available_externally functions to the module-level cleanup sweep where
it belongs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80533 91177308-0d34-0410-b5e6-96231b3b80d8
argpromotion and structretpromote. Basically, when replacing
a function, they used the 'changeFunction' api which changes
the entry in the function map (and steals/reuses the callgraph
node).
This has some interesting effects: first, the problem is that it doesn't
update the "callee" edges in any callees of the function in the call graph.
Second, this covers for a major problem in all the CGSCC pass stuff, which
is that it is completely broken when functions are deleted if they *don't*
reuse a CGN. (there is a cute little fixme about this though :).
This patch changes the protocol that CGSCC passes must obey: now the CGSCC
pass manager copies the SCC and preincrements its iterator to avoid passes
invalidating it. This allows CGSCC passes to mutate the current SCC. However
multiple passes may be run on that SCC, so if passes do this, they are now
required to *update* the SCC to be current when they return.
Other less interesting parts of this patch are that it makes passes update
the CG more directly, eliminates changeFunction, and requires clients of
replaceCallSite to specify the new callee CGN if they are changing it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80527 91177308-0d34-0410-b5e6-96231b3b80d8
calls into a function and if the calls bring in arrays, try to merge
them together to reduce stack size. For example, in the testcase
we'd previously end up with 4 allocas, now we end up with 2 allocas.
As described in the comments, this is not really the ideal solution
to this problem, but it is surprisingly effective. For example, on
176.gcc, we end up eliminating 67 arrays at "gccas" time and another
24 at "llvm-ld" time.
One piece of concern that I didn't look into: at -O0 -g with
forced inlining this will almost certainly result in worse debug
info. I think this is acceptable though given that this is a case
of "debugging optimized code", and we don't want debug info to
prevent the optimizer from doing things anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80215 91177308-0d34-0410-b5e6-96231b3b80d8
and introduce a new Instruction::isIdenticalTo which tests for full
identity, including the SubclassOptionalData flags. Also, fix the
Instruction::clone implementations to preserve the SubclassOptionalData
flags. Finally, teach several optimizations how to handle
SubclassOptionalData correctly, given these changes.
This fixes the counterintuitive behavior of isIdenticalTo not comparing
the full value, and clone not returning an identical clone, as well as
some subtle bugs that could be caused by these.
Thanks to Nick Lewycky for reporting this, and for an initial patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80038 91177308-0d34-0410-b5e6-96231b3b80d8
This change speeds up llvm-gcc by more then 6% at "-O0 -g" (measured by compiling InstructionCombining.cpp!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79977 91177308-0d34-0410-b5e6-96231b3b80d8
the command line. This gives llvm-gcc developers
a way to control inlining (documented as "not intended
for end users").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79966 91177308-0d34-0410-b5e6-96231b3b80d8
member out of line. ftostr is not particularly speedy,
so that method is presumably not perf sensitive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79885 91177308-0d34-0410-b5e6-96231b3b80d8
by hand, and fix a few places that were using hasInitializer() that
appear to depend on the initializer value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79441 91177308-0d34-0410-b5e6-96231b3b80d8
vector (&Formals[0]). With this change llvm-gcc builds
with expensive checking enabled for C, C++ and Fortran.
While there, change a std::vector into a SmallVector.
This is partly gratuitous, but mostly because not all
STL vector implementations define the data method (and
it should be faster).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79237 91177308-0d34-0410-b5e6-96231b3b80d8