crossing and generally work more like the blend emission code in the new
vector shuffle lowering.
My goal is to have the new vector shuffle lowering just produce VSELECT
nodes that are either matched here to BLENDI or are legal and matched in
the .td files to specific blend instructions. That seems much cleaner as
there are other ways to produce a VSELECT anyways. =]
No *observable* functionality changed yet, mostly because this code
appears to be near-dead. The behavior of this lowering routine did
change though. This code being mostly dead and untestable will change
with my next commit which will also point some new tests at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218588 91177308-0d34-0410-b5e6-96231b3b80d8
AVX-512.
There is no interesting logic yet. Everything ends up eventually
delegating to the generic code to split the vector and shuffle the
halves. Interestingly, that logic does a significantly better job of
lowering all of these types than the generic vector expansion code does.
Mostly, it lets most of the cases fall back to nice AVX2 code rather
than all the way back to SSE code paths.
Step 2 of basic AVX-512 support in the new vector shuffle lowering. Next
up will be to incrementally add direct support for the basic instruction
set to each type (adding tests first).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218585 91177308-0d34-0410-b5e6-96231b3b80d8
assertion, making the name generic, and improving the documentation.
Step 1 in adding very primitive support for AVX-512. No functionality
changed yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218584 91177308-0d34-0410-b5e6-96231b3b80d8
vectors.
Someone will need to build the AVX512 lowering, which should follow
AVX1 and AVX2 *very* closely for AVX512F and AVX512BW resp. I've added
a dummy test which is a port of the v8f32 and v8i32 tests from AVX and
AVX2 to v8f64 and v8i64 tests for AVX512F and AVX512BW. Hopefully this
is enough information for someone to implement proper lowering here. If
not, I'll be happy to help, but right now the AVX-512 support isn't
a priority for me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218583 91177308-0d34-0410-b5e6-96231b3b80d8
lowerings.
This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.
Anyways, thanks to Hal for helping me sort out what these *should* be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218582 91177308-0d34-0410-b5e6-96231b3b80d8
new vector shuffle target DAG combines -- it helps to actually test for
the value you want rather than just using an integer in a boolean
context.
Have I mentioned that I loathe implicit conversions recently? :: sigh ::
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218576 91177308-0d34-0410-b5e6-96231b3b80d8
of widening masks.
We can't widen a zeroing mask unless both elements that would be merged
are either zeroed or undef. This is the only way to widen a mask if it
has a zeroed element.
Also clean up the code here by ordering the checks in a more logical way
and by using the symoblic values for undef and zero. I'm actually torn
on using the symbolic values because the existing code is littered with
the assumption that -1 is undef, and moreover that entries '< 0' are the
special entries. While that works with the values given to these
constants, using the symbolic constants actually makes it a bit more
opaque why this is the case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218575 91177308-0d34-0410-b5e6-96231b3b80d8
I spotted this by inspection when debugging something else, so I have no
test case what-so-ever, and am not even sure it is possible to
realistically trigger the bug. But this is what was intended here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218565 91177308-0d34-0410-b5e6-96231b3b80d8
and in the target shuffle combining when trying to widen vector
elements.
Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.
There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.
I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218562 91177308-0d34-0410-b5e6-96231b3b80d8
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.
This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218561 91177308-0d34-0410-b5e6-96231b3b80d8
that managed to elude all of my fuzz testing historically. =/
Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218540 91177308-0d34-0410-b5e6-96231b3b80d8
layer of tie-breaking sorting, it really helps to check that you're in
a tie first. =] Otherwise the whole thing cycles infinitely. Test case
added, another one found through fuzz testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218523 91177308-0d34-0410-b5e6-96231b3b80d8
AVX support.
New test cases included. Note that none of the existing test cases
covered these buggy code paths. =/ Also, it is clear from this that
SHUFPS and SHUFPD are the most bug prone shuffle instructions in x86. =[
These were all detected by fuzz-testing. (I <3 fuzz testing.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218522 91177308-0d34-0410-b5e6-96231b3b80d8
The SSE rsqrt instruction (a fast reciprocal square root estimate) was
grouped in the same scheduling IIC_SSE_SQRT* class as the accurate (but very
slow) SSE sqrt instruction. For code which uses rsqrt (possibly with
newton-raphson iterations) this poor scheduling was affecting performances.
This patch splits off the rsqrt instruction from the sqrt instruction scheduling
classes and creates new IIC_SSE_RSQER* classes with latency values based on
Agner's table.
Differential Revision: http://reviews.llvm.org/D5370
Patch by Simon Pilgrim.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218517 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change.
I initially thought that pulling the Pat<> into the instruction pattern was
not possible because it was doing a transform on the index in order to convert
it from a per-element (extract_subvector) index into a per-chunk (vextract*x4)
index.
Turns out this also works inside the pattern because the vextract_extract
PatFrag has an OperandTransform EXTRACT_get_vextract{128,256}_imm, so the
index in $idx goes through the same conversion.
The existing test CodeGen/X86/avx512-insert-extract.ll extended in the
previous commit provides coverage for this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218480 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change.
These are now implemented as two levels of multiclasses heavily relying on the
new X86VectorVTInfo class. The multiclass at the first level that is called
with float or int provides the 128 or 256 bit subvector extracts. The second
level provides the register and memory variants and some more Pat<>s.
I've compared the td.expanded files before and after. One change is that
ExeDomain for 64x4 is SSEPackedDouble now. I think this is correct, i.e. a
bugfix.
(BTW, this is the change that was blocked on the recent tablegen fix. The
class-instance values X86VectorVTInfo inside vextract_for_type weren't
properly evaluated.)
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218478 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218455 91177308-0d34-0410-b5e6-96231b3b80d8
v4f64 and v8f32 shuffles when they are lane-crossing. We have fully
general lane-crossing permutation functions in AVX2 that make this easy.
Part of this also changes exactly when and how these vectors are split
up when we don't have AVX2. This isn't always a win but it usually is
a win, so on the balance I think its better. The primary regressions are
all things that just need to be fixed anyways such as modeling when
a blend can be completely accomplished via VINSERTF128, etc.
Also, this highlights one of the few remaining big features: we do
a really poor job of inserting elements into AVX registers efficiently.
This completes almost all of the big tricks I have in mind for AVX2. The
only things left that I plan to add:
1) element insertion smarts
2) palignr and other fairly specialized lowerings when they happen to
apply
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218449 91177308-0d34-0410-b5e6-96231b3b80d8
256-bit vectors with lane-crossing.
Rather than immediately decomposing to 128-bit vectors, try flipping the
256-bit vector lanes, shuffling them and blending them together. This
reduces our worst case shuffle by a pretty significant margin across the
board.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218446 91177308-0d34-0410-b5e6-96231b3b80d8
lowering where it only used the mask of the low 128-bit lane rather than
the entire mask.
This allows the new lowering to correctly match the unpack patterns for
v8i32 vectors.
For reference, the reason that we check for the the entire mask rather
than checking the repeated mask is because the repeated masks don't
abide by all of the invariants of normal masks. As a consequence, it is
safer to use the full mask with functions like the generic equivalence
test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218442 91177308-0d34-0410-b5e6-96231b3b80d8
reduce the amount of checking we do here.
The first realization is that only non-crossing cases between 128-bit
lanes are handled by almost the entire function. It makes more sense to
handle the crossing cases first.
THe second is that until we actually are going to generate fancy shared
lowering strategies that use the repeated semantics of the v8i16
lowering, we should waste time checking for repeated masks. It is
simplest to directly test for the entire unpck masks anyways, so we
gained nothing from this.
This also matches the structure of v32i8 more closely.
No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218441 91177308-0d34-0410-b5e6-96231b3b80d8
lowering.
This completes the basic AVX2 feature support, but there are still some
improvements I'd like to do to really get the last mile of performance
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218440 91177308-0d34-0410-b5e6-96231b3b80d8
for this now.
Should prevent folks from running afoul of this and not knowing why
their code won't instruction select the way I just did...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218436 91177308-0d34-0410-b5e6-96231b3b80d8
missing test cases for it.
Unsurprisingly, without test cases, there were bugs here. Surprisingly,
this bug wasn't caught at compile time. Yep, there is an X86ISD::BLENDV.
It isn't wired to anything. Oops. I'll fix than next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218434 91177308-0d34-0410-b5e6-96231b3b80d8
lowering.
This also implements the fancy blend lowering for v16i16 using AVX2 and
teaches the X86 backend to print shuffle masks for 256-bit PSHUFB
and PBLENDW instructions. It also makes the mask decoding correct for
PBLENDW instructions. The yaks, they are legion.
Tests are updated accordingly. There are some missing tests for the
VBLENDVB lowering, but I'll add those in a follow-up as this commit has
accumulated enough cruft already.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218430 91177308-0d34-0410-b5e6-96231b3b80d8
into unblended shuffles and a blend.
This is the consistent fallback for the lowering paths that have fast
blend operations available, and its getting quite repetitive.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218399 91177308-0d34-0410-b5e6-96231b3b80d8
pool data being loaded into a vector register.
The comments take the form of:
# ymm0 = [a,b,c,d,...]
# xmm1 = <x,y,z...>
The []s are used for generic sequential data and the <>s are used for
specifically ConstantVector loads. Undef elements are printed as the
letter 'u', integers in decimal, and floating point values as floating
point values. Suggestions on improving the formatting or other aspects
of the display are very welcome.
My primary use case for this is to be able to FileCheck test masks
passed to vector shuffle instructions in-register. It isn't fantastic
for that (no decoding special zeroing semantics or other tricks), but it
at least puts the mask onto an instruction line that could reasonably be
checked. I've updated many of the new vector shuffle lowering tests to
leverage this in their test cases so that we're actually checking the
shuffle masks remain as expected.
Before implementing this, I tried a *bunch* of different approaches.
I looked into teaching the MCInstLower code to scan up the basic block
and find a definition of a register used in a shuffle instruction and
then decode that, but this seems incredibly brittle and complex.
I talked to Hal a lot about the "right" way to do this: attach the raw
shuffle mask to the instruction itself in some form of unencoded
operands, and then use that to emit the comments. I still think that's
the optimal solution here, but it proved to be beyond what I'm up for
here. In particular, it seems likely best done by completing the
plumbing of metadata through these layers and attaching the shuffle mask
in metadata which could have fully automatic dropping when encoding an
actual instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218377 91177308-0d34-0410-b5e6-96231b3b80d8
attempt didn't work out so well. It looks like it will be much better
for introducing extra logic to find a shuffle mask if the finding logic
is totally separate. This also makes it easy to sink the opcode logic
completely out of the routine so we don't re-dispatch across it.
Still no functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218363 91177308-0d34-0410-b5e6-96231b3b80d8
asm. This can be somewhat expensive and there is no reason to do it
outside of tests or debugging sessions. I'm also likely to make it
significantly more expensive to support more styles of shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218362 91177308-0d34-0410-b5e6-96231b3b80d8
from the MachineInstr into the caller which is already doing a switch
over the instruction.
This will make it more clear how to compute different operands to feed
the comment selection for example.
Also, in a drive-by-fix, don't append an empty comment string (which is
a no-op ultimately).
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218361 91177308-0d34-0410-b5e6-96231b3b80d8
vector shuffles.
This is just the beginning by hoisting it into its own function and
making use of early exit to dramatically simplify the flow of the
function. I'm going to be incrementally refactoring this until it is
a bit less magical how this applies to other instructions, and I can
teach it how to dig a shuffle mask out of a register. Then I plan to
hook it up to VPERMD so we get our mask comments for it.
No functionality changed yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218357 91177308-0d34-0410-b5e6-96231b3b80d8
the native AVX2 instructions.
Note that the test case is really frustrating here because VPERMD
requires the mask to be in the register input and we don't produce
a comment looking through that to the constant pool. I'm going to
attempt to improve this in a subsequent commit, but not sure if I will
succeed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218347 91177308-0d34-0410-b5e6-96231b3b80d8
detection. It was incorrectly handling undef lanes by actually treating
an undef lane in the first 128-bit lane as a *numeric* shuffle value.
Fortunately, this almost always DTRT and disabled detecting repeated
patterns. But not always. =/ This patch introduces a much more
principled approach and fixes the miscompiles I spotted by inspection
previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218346 91177308-0d34-0410-b5e6-96231b3b80d8
shuffles using the AVX2 instructions. This is the first step of cutting
in real AVX2 support.
Note that I have spotted at least one bug in the test cases already, but
I suspect it was already present and just is getting surfaced. Will
investigate next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218338 91177308-0d34-0410-b5e6-96231b3b80d8
add VPBLENDD to the InstPrinter's comment generation so we get nice
comments everywhere.
Now that we have the nice comments, I can see the bug introduced by
a silly typo in the commit that enabled VPBLENDD, and have fixed it. Yay
tests that are easy to inspect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218335 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AtomicExpand already had logic for expanding wide loads and stores on LL/SC
architectures, and for expanding wide stores on CmpXchg architectures, but
not for wide loads on CmpXchg architectures. This patch fills this hole,
and makes use of this new feature in the X86 backend.
Only one functionnal change: we now lose the SynchScope attribute.
It is regrettable, but I have another patch that I will submit soon that will
solve this for all of AtomicExpand (it seemed better to split it apart as it
is a different concern).
Test Plan: make check-all (lots of tests for this functionality already exist)
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5404
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218332 91177308-0d34-0410-b5e6-96231b3b80d8
VPBLENDD where appropriate even on 128-bit vectors.
According to Agner's tables, this instruction is significantly higher
throughput (can execute on any port) on Haswell chips so we should
aggressively try to form it when available.
Sadly, this loses our delightful shuffle comments. I'll add those back
for VPBLENDD next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218322 91177308-0d34-0410-b5e6-96231b3b80d8
undef in the shuffle mask. This shows up when we're printing comments
during lowering and we still have an IR-level constant hanging around
that models undef.
A nice consequence of this is *much* prettier test cases where the undef
lanes actually show up as undef rather than as a particular set of
values. This also allows us to print shuffle comments in cases that use
undef such as the recently added variable VPERMILPS lowering. Now those
test cases have nice shuffle comments attached with their details.
The shuffle lowering for PSHUFB has been augmented to use undef, and the
shuffle combining has been augmented to comprehend it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218301 91177308-0d34-0410-b5e6-96231b3b80d8
trick that I missed.
VPERMILPS has a non-immediate memory operand mode that allows it to do
asymetric shuffles in the two 128-bit lanes. Use this rather than two
shuffles and a blend.
However, it turns out the variable shuffle path to VPERMILPS (and
VPERMILPD, although that one offers no functional differenc from the
immediate operand other than variability) wasn't even plumbed through
codegen. Do such plumbing so that we can reasonably emit
a variable-masked VPERMILP instruction. Also plumb basic comment parsing
and printing through so that the tests are reasonable.
There are still a few tests which don't show the shuffle pattern. These
are tests with undef lanes. I'll teach the shuffle decoding and printing
to handle undef mask entries in a follow-up. I've looked at the masks
and they seem reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218300 91177308-0d34-0410-b5e6-96231b3b80d8
td pattern). Currently we only model the immediate operand variation of
VPERMILPS and VPERMILPD, we should make that clear in the pseudos used.
Will be adding support for the variable mask variant in my next commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218282 91177308-0d34-0410-b5e6-96231b3b80d8