Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
The partitioning logic attempted to handle uses of an alloca with an
offset starting before the alloca so long as the use had some overlap
with the alloca itself. However, there was a bug where we tested
'(uint64_t)Offset >= AllocSize' without first checking whether 'Offset'
was positive. As a consequence, essentially every negative offset (that
is, starting *before* the alloca does) would be thrown out, even if it
was overlapping. The subsequent code to throw out negative offsets which
were actually non-overlapping was essentially dead. The code to *handle*
overlapping negative offsets was actually dead!
I've just removed all of this, and taught SROA to discard any uses which
start prior to the alloca from the beginning. It has the lovely property
of simplifying the code. =] All the tests still pass, and in fact no new
tests are needed as this is already covered by our testsuite. Fixing the
code so that negative offsets work the way the comments indicate they
were supposed to work causes regressions. That's how I found this.
Anyways, this is all progress in the correct direction -- tightening up
SROA to be maximally aggressive. Some day, I really hope to turn
out-of-bounds accesses to an alloca into 'unreachable'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169120 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169044 91177308-0d34-0410-b5e6-96231b3b80d8
The simplify-libcalls pass maintained a statistic to count the number
of library calls that have been simplified. Now that library call
simplification is being carried out in instcombine the statistic should
be moved to there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168975 91177308-0d34-0410-b5e6-96231b3b80d8
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168972 91177308-0d34-0410-b5e6-96231b3b80d8
This revision attempts to recognize following population-count pattern:
while(a) { c++; ... ; a &= a - 1; ... },
where <c> and <a>could be used multiple times in the loop body.
TODO: On X8664 and ARM, __buildin_ctpop() are not expanded to a efficent
instruction sequence, which need to be improved in the following commits.
Reviewed by Nadav, really appreciate!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168931 91177308-0d34-0410-b5e6-96231b3b80d8
the last invoke instruction in the function. This also removes the last landing
pad in an function. This is fine, but with SjLj EH code, we've already placed a
bunch of code in the 'entry' block, which expects the landing pad to stick
around.
When we get to the situation where CGP has removed the last landing pad, go
ahead and nuke the SjLj instructions from the 'entry' block.
<rdar://problem/12721258>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168930 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the puts optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
All the simplifiers from simplify-libcalls have now been migrated to
instcombine. Yay! Just a few other bits to migrate (prototype attribute
inference and a few statistics) and simplify-libcalls can finally be put
to rest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168925 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the fputs optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168893 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the fwrite optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168892 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the fprintf optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168891 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the sprintf optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168677 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the printf optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168604 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the toascii optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168580 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the isascii optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168579 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the isdigit optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168578 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the *abs optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168574 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the ffs* optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168571 91177308-0d34-0410-b5e6-96231b3b80d8
It can delete the block, and the loop continues on free'd memory.
No change in output. Found by valgrind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168525 91177308-0d34-0410-b5e6-96231b3b80d8
Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168418 91177308-0d34-0410-b5e6-96231b3b80d8
printing functions themselves.
Part of PR14324 (which should have just been a patch to the list, but
hey...)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168362 91177308-0d34-0410-b5e6-96231b3b80d8
The issue is that we may end up with newly OOB loads when speculating
a load into the predecessors of a PHI node, and this confuses the new
integer splitting logic in some cases, triggering an assertion failure.
In fact, the branch in question must be dead code as it loads from
a too-narrow alloca. Add code to handle this gracefully and leave the
requisite FIXMEs for both optimizing more aggressively and doing more to
aid sanitizing invalid code which triggers these patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168361 91177308-0d34-0410-b5e6-96231b3b80d8
to properly handle the combinations of these with split integer loads
and stores. This essentially replaces Evan's r168227 by refactoring the
code in a different way, and trynig to mirror that refactoring in both
the load and store sides of the rewriting.
Generally speaking there was some really problematic duplicated code
here that led to poorly founded assumptions and then subtle bugs. Now
much of the code actually flows through and follows a more consistent
style and logical path. There is still a tiny bit of duplication on the
store side of things, but it is much less bad.
This also changes the logic to never re-use a load or store instruction
as that was simply too error prone in practice.
I've added a few tests (one a reduction of the one in Evan's original
patch, which happened to be the same as the report in PR14349). I'm
going to look at adding a few more tests for things I found and fixed in
passing (such as the volatile tests in the vectorizable predicate).
This patch has survived bootstrap, and modulo one bugfix survived
Duncan's test suite, but let me know if anything else explodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168346 91177308-0d34-0410-b5e6-96231b3b80d8
operands of the expression being written was wrongly thought to be reusable as
an inner node of the expression resulting in it turning up as both an inner node
*and* a leaf, creating a cycle in the def-use graph. This would have caused the
verifier to blow up if things had gotten that far, however it managed to provoke
an infinite loop first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168291 91177308-0d34-0410-b5e6-96231b3b80d8
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168035 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167815 91177308-0d34-0410-b5e6-96231b3b80d8
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167740 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memset optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167689 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memmove optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167687 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167686 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memcmp optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167683 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strstr optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167682 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcspn optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167675 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strspn optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167568 91177308-0d34-0410-b5e6-96231b3b80d8
The new analysis is not yet ready for prime time. It has a *critical*
flawed assumption, and some troubling shortages of testing. Until it's
been hammered into better shape, let's stick with the working code. This
should be easy to revert itself when the analysis is ready.
Fixes PR14241, a miscompile of any memcpy-able loop which uses a pointer
as the induction mechanism. If you have been seeing miscompiles in this
revision range, you really want to test with this backed out. The
results of this miscompile are a bit subtle as they can lead to
downstream passes concluding things are impossible which are in fact
possible.
Thanks to David Blaikie for the majority of the reduction of this
miscompile. I'll be checking in the test case in a non-revert commit.
Revesions reverted here:
r167045: LoopIdiom: Fix a serious missed optimization: we only turned
top-level loops into memmove.
r166877: LoopIdiom: Add checks to avoid turning memmove into an infinite
loop.
r166875: LoopIdiom: Recognize memmove loops.
r166874: LoopIdiom: Replace custom dependence analysis with
DependenceAnalysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167286 91177308-0d34-0410-b5e6-96231b3b80d8
test/Transforms/GVN/rle.ll if the (currently disabled) check for a
pointer type in getIntPtrType is turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167285 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strto* optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167119 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strpbrk optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167105 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strlen optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167103 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strncpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167102 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the stpcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier. Note that the
__stpcpy_chk simplifications were migrated in a previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167083 91177308-0d34-0410-b5e6-96231b3b80d8
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167051 91177308-0d34-0410-b5e6-96231b3b80d8
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167011 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166939 91177308-0d34-0410-b5e6-96231b3b80d8
This turns loops like
for (unsigned i = 0; i != n; ++i)
p[i] = p[i+1];
into memmove, which has a highly optimized implementation in most libcs.
This was really easy with the new DependenceAnalysis :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166875 91177308-0d34-0410-b5e6-96231b3b80d8
Requires a lot less code and complexity on loop-idiom's side and the more
precise analysis can catch more cases, like the one I included as a test case.
This also fixes the edge-case miscompilation from PR9481.
Compile time performance seems to be slightly worse, but this is mostly due
to an extra LCSSA run scheduled by the PassManager and should be fixed there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166874 91177308-0d34-0410-b5e6-96231b3b80d8
smaller integer loads and stores.
The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.
Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.
If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.
Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166662 91177308-0d34-0410-b5e6-96231b3b80d8
every TU where it's implicitly instantiated, even if there's an implicit
instantiation for the same types available in another TU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166470 91177308-0d34-0410-b5e6-96231b3b80d8
very small but very important bugfix:
bool shouldExplore(Use *U) {
Value *V = U->get();
if (isa<CallInst>(V) || isa<InvokeInst>(V))
[...]
should have read:
bool shouldExplore(Use *U) {
Value *V = U->getUser();
if (isa<CallInst>(V) || isa<InvokeInst>(V))
Fixes PR14143!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166407 91177308-0d34-0410-b5e6-96231b3b80d8
It passes all tests, produces better results than the old code but uses the
wrong pass, LoopDependenceAnalysis, which is old and unmaintained. "Why is it
still in tree?", you might ask. The answer is obviously: "To confuse developers."
Just swapping in the new dependency pass sends the pass manager into an infinte
loop, I'll try to figure out why tomorrow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166399 91177308-0d34-0410-b5e6-96231b3b80d8
Requires a lot less code and complexity on loop-idiom's side and the more
precise analysis can catch more cases, like the one I included as a test case.
This also fixes the edge-case miscompilation from PR9481. I'm not entirely
sure that all cases are handled that the old checks handled but LDA will
certainly become smarter in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166390 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcpy optimizations from the simplify-libcalls pass
into the instcombine library call simplifier. Note also that StrCpyChkOpt
has been updated with a few simplifications that were being done in the
simplify-libcalls version of StrCpyOpt, but not in the migrated implementation
of StrCpyOpt. There is no reason to overload StrCpyOpt with fortified and
regular simplifications in the new model since there is already a dedicated
simplifier for __strcpy_chk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166198 91177308-0d34-0410-b5e6-96231b3b80d8
operate purely on values. Sink the alloca loading and storing logic into
the rewrite routines that are specific to alloca-integer-rewrite
driving. This is just a refactoring here, but the subsequent step will
be to reuse the insertion and extraction logic when rewriting integer
loads and stores that have been split and decomposed into narrower loads
and stores.
No functionality changed other than different names for instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166176 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
a pointer. A very bad idea. Let's not do that. Fixes PR14105.
Note that this wasn't *that* glaring of an oversight. Originally, these
routines were only called on offsets within an alloca, which are
intrinsically positive. But over the evolution of the pass, they ended
up being called for arbitrary offsets, and things went downhill...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166095 91177308-0d34-0410-b5e6-96231b3b80d8
revision makes no sense. We cannot use the address space of the *post
indexed* type to conclude anything about a *pre indexed* pointer type's
size. More importantly, this index can never be over a pointer. We are
indexing over arrays and vectors here.
Of course, I have no test case here. Neither did the original patch. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166091 91177308-0d34-0410-b5e6-96231b3b80d8
includes extracting ints for copying elsewhere and inserting ints when
copying into the alloca. This should fix the CanSROA assertion coming
out of Clang's regression test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165931 91177308-0d34-0410-b5e6-96231b3b80d8
and generally clean up the memset handling. It had rotted a bit as the
other rewriting logic got polished more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165930 91177308-0d34-0410-b5e6-96231b3b80d8
cases where we have partial integer loads and stores to an otherwise
promotable alloca to widen[1] those loads and stores to cover the entire
alloca and bitcast them into the appropriate type such that promotion
can proceed.
These partial loads and stores stem from an annoying confluence of ARM's
calling convention and ABI lowering and the FCA pre-splitting which
takes place in SROA. Clang lowers a { double, double } in-register
function argument as a [4 x i32] function argument to ensure it is
placed into integer 32-bit registers (a really unnerving implicit
contract between Clang and the ARM backend I would add). This results in
a FCA load of [4 x i32]* from the { double, double } alloca, and SROA
decomposes this into a sequence of i32 loads and stores. Inlining
proceeds, code gets folded, but at the end of the day, we still have i32
stores to the low and high halves of a double alloca. Widening these to
be i64 operations, and bitcasting them to double prior to loading or
storing allows promotion to proceed for these allocas.
I looked quite a bit changing the IR which Clang produces for this case
to be more friendly, but small changes seem unlikely to help. I think
the best representation we could use currently would be to pass 4 i32
arguments thereby avoiding any FCAs, but that would still require this
fix. It seems like it might eventually be nice to somehow encode the ABI
register selection choices outside of the parameter type system so that
the parameter can be a { double, double }, but the CC register
annotations indicate that this should be passed via 4 integer registers.
This patch does not address the second problem in PR14059, which is the
reverse: when a struct alloca is loaded as a *larger* single integer.
This patch also does not address some of the code quality issues with
the FCA-splitting. Those don't actually impede any optimizations really,
but they're on my list to clean up.
[1]: Pedantic footnote: for those concerned about memory model issues
here, this is safe. For the alloca to be promotable, it cannot escape or
have any use of its address that could allow these loads or stores to be
racing. Thus, widening is always safe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165928 91177308-0d34-0410-b5e6-96231b3b80d8
into static helper functions. They're really quite generic and are going
to be needed elsewhere shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165927 91177308-0d34-0410-b5e6-96231b3b80d8
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165917 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcmp and strncmp optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165915 91177308-0d34-0410-b5e6-96231b3b80d8
Erasing from the beginning or middle of the vector is expensive, remove_if can
do it in linear time even though it's a bit ugly without lambdas.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165903 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strchr and strrchr optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165875 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcat and strncat optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165874 91177308-0d34-0410-b5e6-96231b3b80d8
type coercion code, especially when targetting ARM. Things like [1
x i32] instead of i32 are very common there.
The goal of this logic is to ensure that when we are picking an alloca
type, we look through such wrapper aggregates and across any zero-length
aggregate elements to find the simplest type possible to form a type
partition.
This logic should (generally speaking) rarely fire. It only ends up
kicking in when an alloca is accessed using two different types (for
instance, i32 and float), and the underlying alloca type has wrapper
aggregates around it. I noticed a significant amount of this occurring
looking at stepanov_abstraction generated code for arm, and suspect it
happens elsewhere as well.
Note that this doesn't yet address truly heinous IR productions such as
PR14059 is concerning. Those result in mismatched *sizes* of types in
addition to mismatched access and alloca types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165870 91177308-0d34-0410-b5e6-96231b3b80d8
help the dragonegg builders, and no test case at this point, but this
was one dimly plausible case I spotted by inspection. Hopefully will get
a testcase from those bots soon-ish, and will tidy this up with proper
testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165869 91177308-0d34-0410-b5e6-96231b3b80d8
are single value types, the load and store should be directly based upon
the alloca and then bitcasting can fix the type as needed afterward.
This might in theory improve some of the IR coming out of SROA, but
I don't expect big changes yet and don't have any test cases on hand.
This is really just a cleanup/refactoring patch. The next patch will
cause this code path to be hit a lot more, actually get SROA to promote
more allocas and include several more test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165864 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to Benjamin for the raw test case. This one took about 50 times
longer to reduce than to fix. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165476 91177308-0d34-0410-b5e6-96231b3b80d8
This class is used by LSR and a number of places in the codegen.
This is the first step in de-coupling LSR from TLI, and creating
a new interface in between them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165455 91177308-0d34-0410-b5e6-96231b3b80d8
have an alloca or a parameter, since then the alloca test should make sense
to readers, while before it probably appears too specific. No functionality
change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165306 91177308-0d34-0410-b5e6-96231b3b80d8
are in fact identity operations. We detect these and kill their
partitions so that even splitting is unaffected by them. This is
particularly important because Clang relies on emitting identity memcpy
operations for struct copies, and these fold away to constants very
often after inlining.
Fixes the last big performance FIXME I have on my plate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165285 91177308-0d34-0410-b5e6-96231b3b80d8
the rewrite visitor to make the fact that the speculation is completely
independent a bit more clear.
I promise that this is just a cut/paste of the one visitor and adding
the annonymous namespace wrappings. The diff may look completely
preposterous, it does in git for some reason.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165284 91177308-0d34-0410-b5e6-96231b3b80d8
cpyDest can be mutated in some cases, which would then cause a crash later if
indeed the memory was underaligned. This brought down several buildbots, so
I guess the underaligned case is much more common than I thought!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165228 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, we re-visit allocas when something changes about the way they
might be *split* to allow better scalarization to take place. However,
we weren't handling the case when the *promotion* is what would change
the behavior of SROA. When an address derived from an alloca is stored
into another alloca, we consider the first to have escaped. If the
second is ever promoted to an SSA value, we will suddenly be able to run
the SROA pass on the first alloca.
This patch adds explicit support for this form if iteration. When we
detect a store of a pointer derived from an alloca, we flag the
underlying alloca for reprocessing after promotion. The logic works hard
to only do this when there is definitely going to be promotion and it
might remove impediments to the analysis of the alloca.
Thanks to Nick for the great test case and Benjamin for some sanity
check review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165223 91177308-0d34-0410-b5e6-96231b3b80d8
was less aligned than the old. In the testcase this results in an overaligned
memset: the memset alignment was correct for the original memory but is too much
for the new memory. Fix this by either increasing the alignment of the new
memory or bailing out if that isn't possible. Should fix the gcc-4.7 self-host
buildbot failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165220 91177308-0d34-0410-b5e6-96231b3b80d8
Sorry for this being broken so long. =/
As part of this, switch all of the existing tests to be Little Endian,
which is the behavior I was asserting in them anyways! Add in a new
big-endian test that checks the interesting behavior there.
Another part of this is to tighten the rules abotu when we perform the
full-integer promotion. This logic now rejects cases where there fully
promoted integer is a non-multiple-of-8 bitwidth or cases where the
loads or stores touch bits which are in the allocated space of the
alloca but are not loaded or stored when accessing the integer. Sadly,
these aren't really observable today as the rest of the pass will
already ensure the invariants hold. However, the latter situation is
likely to become a potential concern in the future.
Thanks to Benjamin and Duncan for early review of this patch. I'm still
looking into whether there are further endianness issues, please let me
know if anyone sees BE failures persisting past this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165219 91177308-0d34-0410-b5e6-96231b3b80d8
a memcpy to reflect that '0' has a different meaning when applied to
a load or store. Now we correctly use underaligned loads and stores for
the test case added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165101 91177308-0d34-0410-b5e6-96231b3b80d8
necessary during rewriting. As part of this, fix a real think-o here
where we might have left off an alignment specification when the address
is in fact underaligned. I haven't come up with any way to trigger this,
as there is always some other factor that reduces the alignment, but it
certainly might have been an observable bug in some way I can't think
of. This also slightly changes the strategy for placing explicit
alignments on loads and stores to only do so when the alignment does not
match that required by the ABI. This causes a few redundant alignments
to go away from test cases.
I've also added a couple of tests that really push on the alignment that
we end up with on loads and stores. More to come here as I try to fix an
underlying bug I have conjectured and produced test cases for, although
it's not clear if this bug is the one currently hitting dragonegg's
gcc47 bootstrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165100 91177308-0d34-0410-b5e6-96231b3b80d8
preserves the values of the relocated entries, unlikely remove_if. This
allows walking them and erasing them.
Also flesh out the predicate we are using for this to support the
various constraints actually imposed on a UnaryPredicate -- without this
we can't compose it with std::not1.
Thanks to Sean Silva for the review here and noticing the issue with
std::remove_if.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165073 91177308-0d34-0410-b5e6-96231b3b80d8
scheduled for processing on the worklist eventually gets deleted while
we are processing another alloca, fixing the original test case in
PR13990.
To facilitate this, add a remove_if helper to the SetVector abstraction.
It's not easy to use the standard abstractions for this because of the
specifics of SetVectors types and implementation.
Finally, a nice small test case is included. Thanks to Benjamin for the
fantastic reduced test case here! All I had to do was delete some empty
basic blocks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165065 91177308-0d34-0410-b5e6-96231b3b80d8
We require that the indices into the use lists are stable in order to
build fast lookup tables to locate a particular partition use from an
operand of a PHI or select. This is (obviously in hind sight)
incompatible with erasing elements from the array. Really, we don't want
to erase anyways. It is expensive, and a rare operation. Instead, simply
weaken the contract of the PartitionUse structure to allow null Use
pointers to represent dead uses. Now we can clear out the pointer to
mark things as dead, and all it requires is adding some 'continue'
checks to the various loops.
I'm still reducing a test case for this, as the test case I have is
huge. I think this one I can get a nice test case for though, as it was
much more deterministic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165032 91177308-0d34-0410-b5e6-96231b3b80d8
being separate was that it can grow the use list. As a consequence, we
can't use the iterator-pair interface, we need an index based interface.
Expose such an interface from the AllocaPartitioning, and use it in the
speculator.
This should at least fix a use-after-free bug found by Duncan, and may
fix some of the other crashers.
I don't have a nice deterministic test case yet, but if I get a good
one, I'll add it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165027 91177308-0d34-0410-b5e6-96231b3b80d8
alignment requirements of the new alloca. As one consequence which was
reported as a bug by Duncan, we overaligned memcpy calls to ranges of
allocas after they were rewritten to types with lower alignment
requirements. Other consquences are possible, but I don't have any test
cases for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164937 91177308-0d34-0410-b5e6-96231b3b80d8
could probably be factored still further to hoist this logic into
a generic helper, but currently I don't have particularly clean ideas
about how to handle that.
This at least allows us to drop custom load rewriting from the
speculation logic, which in turn allows the existing load rewriting
logic to fire. In theory, this could enable vector promotion or other
tricks after speculation occurs, but I've not dug into such issues. This
is primarily just cleaning up the factoring of the code and the
resulting logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164933 91177308-0d34-0410-b5e6-96231b3b80d8
a pair of instructions, one for the used pointer and the second for the
user. This simplifies the representation and also makes it more dense.
This was noticed because of the miscompile in PR13926. In that case, we
were running up against a fundamental "bad idea" in the speculation of
PHI and select instructions: the speculation and rewriting are
interleaved, which requires phi speculation to also perform load
rewriting! This is bad, and causes us to miss opportunities to do (for
example) vector rewriting only exposed after PHI speculation, etc etc.
It also, in the old system, required us to insert *new* load uses into
the current partition's use list, which would then be ignored during
rewriting because we had already extracted an end iterator for the use
list. The appending behavior (and much of the other oddities) stem from
the strange de-duplication strategy in the PartitionUse builder.
Amusingly, all this went without notice for so long because it could
only be triggered by having *different* GEPs into the same partition of
the same alloca, where both different GEPs were operands of a single
PHI, and where the GEP which was not encountered first also had multiple
uses within that same PHI node... Hence the insane steps required to
reproduce.
So, step one in fixing this fundamental bad idea is to make the
PartitionUse actually contain a Use*, and to make the builder do proper
deduplication instead of funky de-duplication. This is enough to remove
the appending behavior, and fix the miscompile in PR13926, but there is
more work to be done here. Subsequent commits will lift the speculation
into its own visitor. It'll be a useful step toward potentially
extracting all of the speculation logic into a generic utility
transform.
The existing PHI test case for repeated operands has been made more
extreme to catch even these issues. This test case, run through the old
pass, will exactly reproduce the miscompile from PR13926. ;] We were so
close here!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164925 91177308-0d34-0410-b5e6-96231b3b80d8
alignment could lose it due to the alloca type moving down to a much
smaller alignment guarantee.
Now SROA will actively compute a proper alignment, factoring the target
data, any explicit alignment, and the offset within the struct. This
will in some cases lower the alignment requirements, but when we lower
them below those of the type, we drop the alignment entirely to give
freedom to the code generator to align it however is convenient.
Thanks to Duncan for the lovely test case that pinned this down. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164891 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
contrived for these yet, as I spotted them by inspection and the test
cases are a bit more tricky to phrase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164691 91177308-0d34-0410-b5e6-96231b3b80d8
alignment guarantees attached, re-compute the alignment so that we
consider offsets which impact alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164690 91177308-0d34-0410-b5e6-96231b3b80d8
rewriter in SROA to carry a proper alignment. This involves
interrogating various sources of alignment, etc. This is a more complete
and principled fix to PR13920 as well as related bugs pointed out by Eli
in review and by inspection in the area.
Also by inspection fix the integer and vector promotion paths to create
aligned loads and stores. I still need to work up test cases for
these... Sorry for the delay, they were found purely by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164689 91177308-0d34-0410-b5e6-96231b3b80d8