This should be sufficient to replace the initial (minor) function pass
pipeline in Clang with the new pass manager. I'll probably add an (off
by default) flag to do that just to ensure we can get extra testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227726 91177308-0d34-0410-b5e6-96231b3b80d8
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.
Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.
Differential Revision: http://reviews.llvm.org/D6471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227125 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r176827.
Björn Steinbrink pointed out that this didn't actually fix the bug
(PR15555) it was attempting to fix.
With this reverted, we can now remove landingpad cleanups that
immediately resume unwinding, converting the invoke to a call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226850 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225552 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix the case where more than 1 common instructions derived from the same
operand cannot be sunk. When a pair of value has more than 1 derived values
in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
map of (BB1, BB2) -> PN, which is more accurate to track common ops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224757 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
An unreachable default destination can be exploited by other optimizations, and
SDag lowering is now prepared to handle them efficiently.
For example, branches to the unreachable destination will be optimized away,
such as in the case of range checks for switch lookup tables.
On 64-bit Linux, this reduces the size of a clang bootstrap by 80 kB (and
Chromium by 30 kB).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223050 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed missing dominance check.
Original commit message:
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
Jump threading will then eliminate the second if(cond).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222891 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
\endcode
Jump threading will then eliminate the second if(cond).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222872 91177308-0d34-0410-b5e6-96231b3b80d8
When converting a switch to a lookup table we might have to generate a bitmaks
to encode and check for holes in the original switch statement.
The type of this mask depends on the number of switch statements, which can
result in illegal types for pretty much all architectures.
To avoid unnecessary type legalization and help FastISel this commit increases
the size of the bitmask to next power-of-2 value when necessary.
This fixes rdar://problem/18984639.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222168 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple optimization for switch table lookup:
It computes the output value directly with an (optional) mul and add if there is a linear mapping between index and output.
Example:
int f1(int x) {
switch (x) {
case 0: return 10;
case 1: return 11;
case 2: return 12;
case 3: return 13;
}
return 0;
}
generates:
define i32 @f1(i32 %x) #0 {
entry:
%0 = icmp ult i32 %x, 4
br i1 %0, label %switch.lookup, label %return
switch.lookup:
%switch.offset = add i32 %x, 10
ret i32 %switch.offset
return:
ret i32 0
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222121 91177308-0d34-0410-b5e6-96231b3b80d8
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
This is the same optimization of r219233 with modifications to support PHIs with multiple incoming edges from the same block
and a test to check that this condition is handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219656 91177308-0d34-0410-b5e6-96231b3b80d8
instead
We used to transform this:
define void @test6(i1 %cond, i8* %ptr) {
entry:
br i1 %cond, label %bb1, label %bb2
bb1:
br label %bb2
bb2:
%ptr.2 = phi i8* [ %ptr, %entry ], [ null, %bb1 ]
store i8 2, i8* %ptr.2, align 8
ret void
}
into this:
define void @test6(i1 %cond, i8* %ptr) {
%ptr.2 = select i1 %cond, i8* null, i8* %ptr
store i8 2, i8* %ptr.2, align 8
ret void
}
because the simplifycfg transformation into selects would happen to happen
before the simplifycfg transformation that removes unreachable control flow
(We have 'unreachable control flow' due to the store to null which is undefined
behavior).
The existing transformation that removes unreachable control flow in simplifycfg
is:
/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB)
Now we generate:
define void @test6(i1 %cond, i8* %ptr) {
store i8 2, i8* %ptr.2, align 8
ret void
}
I did not see any impact on the test-suite + externals.
rdar://18596215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219462 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization tries to convert switch instructions that are used to select a value with only 2 unique cases + default block
to a select or a couple of selects (depending if the default block is reachable or not).
The typical case this optimization wants to be able to optimize is this one:
Example:
switch (a) {
case 10: %0 = icmp eq i32 %a, 10
return 10; %1 = select i1 %0, i32 10, i32 4
case 20: ----> %2 = icmp eq i32 %a, 20
return 2; %3 = select i1 %2, i32 2, i32 %1
default:
return 4;
}
It also sets the base for further optimizations that are planned and being reviewed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219223 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.
The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:
__global__ void foo(int a, int b, int c, int d, int e, int n,
const int *input, int *output) {
int sum = 0;
for (int i = 0; i < n; ++i)
sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
*output = sum;
}
The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:
sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];
Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.
We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!
Test Plan: Added one test case to check the threshold is in effect
Reviewers: nadav, eliben, meheff, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D5529
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218711 91177308-0d34-0410-b5e6-96231b3b80d8
When we have a covered lookup table, make sure we don't delete PHINodes that
are cached in PHIs.
rdar://17887153
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214642 91177308-0d34-0410-b5e6-96231b3b80d8
The lifetime intrinsics need some work in order to make it clear which
optimizations are or are not valid.
For now dropping this optimization avoids a miscompilation.
Patch by Björn Steinbrink.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214336 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
We use gep to access the global array "switch.table", and the table index
should be treated as unsigned. When the highest bit is 1, this commit
zero-extends the index to an integer type with larger size.
For a switch on i2, we used to generate:
%switch.tableidx = sub i2 %0, -2
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i2 %switch.tableidx
It is incorrect when %switch.tableidx is 2 or 3. The fix is to generate
%switch.tableidx = sub i2 %0, -2
%switch.tableidx.zext = zext i2 %switch.tableidx to i3
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i3 %switch.tableidx.zext
rdar://17735071
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213815 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds to an existing loop over phi nodes in SimplifyCondBranchToCondBranch() to check for trapping ops and bails out of the optimization if we find one of those.
The test cases verify that trapping ops are not hoisted and non-trapping ops are still optimized as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212490 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r211331, which failed to notice that we were
returning early from ValidLookupTableConstant for GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211753 91177308-0d34-0410-b5e6-96231b3b80d8
We would previously put dllimport variables in switch lookup tables, which
doesn't work because the address cannot be used in a constant initializer.
This is basically the same problem that we have in PR19955.
Putting TLS variables in switch tables also desn't work, because the
address of such a variable is not constant.
Differential Revision: http://reviews.llvm.org/D4220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211331 91177308-0d34-0410-b5e6-96231b3b80d8
This helps more branches into selects. On R600,
vectors are cheap and anything that helps
remove branches is very good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209914 91177308-0d34-0410-b5e6-96231b3b80d8
Since ExtractValue is not included in ComputeSpeculationCost CFGs containing
ExtractValueInsts cannot be simplified. In particular this interacts with
InstCombineCompare's tendency to insert add.with.overflow intrinsics for
certain idiomatic math operations, preventing optimization.
This patch adds ExtractValue to the ComputeSpeculationCost. Test case included
rdar://14853450
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208434 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to generate table lookups for code such as:
unsigned test(unsigned x) {
switch (x) {
case 100: return 0;
case 101: return 1;
case 103: return 2;
case 105: return 3;
case 107: return 4;
case 109: return 5;
case 110: return 6;
default: return f(x);
}
}
Since cases 102, 104, etc. are not constants, the lookup table has holes
in those positions. We therefore guard the table lookup with a bitmask check.
Patch by Jasper Neumann!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203694 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't set errno, so this should be OK.
Also update the documentation to explicitly state
that errno are not set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200501 91177308-0d34-0410-b5e6-96231b3b80d8
When simplifycfg moves an instruction, it must drop metadata it doesn't know
is still valid with the preconditions changes. In particular, it must drop
the range and tbaa metadata.
The patch implements this with an utility function to drop all metadata not
in a white list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200322 91177308-0d34-0410-b5e6-96231b3b80d8
uint32.
When folding branches to common destination, the updated branch weights
can exceed uint32 by more than factor of 2. We should keep halving the
weights until they can fit into uint32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200262 91177308-0d34-0410-b5e6-96231b3b80d8