is a follow on to r179393 and r179399. Test case to be added on
the clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179403 91177308-0d34-0410-b5e6-96231b3b80d8
According to the ARM reference manual, constant offsets are mandatory for pre-indexed addressing modes.
The MC disassembler was not obeying this when the offset is 0.
It was producing instructions like: str r0, [r1]!.
Correct syntax is: str r0, [r1, #0]!.
This change modifies the dumping of operands so that the offset is always printed, regardless of its value, when pre-indexed addressing mode is used.
Patch by Mihail Popa <Mihail.Popa@arm.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179398 91177308-0d34-0410-b5e6-96231b3b80d8
immediate displacement. Specifically, add support for generating the proper IR.
We've been able to parse this for some time now. Test case to be added on the
clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179393 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen will not combine nested list 'let' bindings into a single list, and
instead uses only the inner scope. As a result, several instruction definitions
were missing implicit register defs that were in outer scopes. This de-nests
these scopes and makes all instructions have only one let binding which sets
implicit register definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179392 91177308-0d34-0410-b5e6-96231b3b80d8
This is prep. work for the implementation of optimizeCompare. Many PPC
instructions have 'record' forms (in almost all cases, this means that the RC
bit is set) that cause the result of the instruction to be compared with zero,
and the result of that comparison saved in a predefined condition register. In
order to add the record forms of the instructions without too much
copy-and-paste, the relevant functions have been refactored into multiclasses
which define both the record and normal forms.
Also, two TableGen-generated mapping functions have been added which allow
querying the instruction code for the record form given the normal form (and
vice versa).
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179356 91177308-0d34-0410-b5e6-96231b3b80d8
variables that use namespace alias qualifiers. Test case coming on clang side
shortly.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179343 91177308-0d34-0410-b5e6-96231b3b80d8
can build up the identifier string. No test case as support for looking up
these type of identifiers hasn't been implemented on the clang side.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179336 91177308-0d34-0410-b5e6-96231b3b80d8
specific logic. This makes the code much less fragile. Test case coming on the
clang side in a moment.
rdar://13634327
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179323 91177308-0d34-0410-b5e6-96231b3b80d8
A64Imms::isLogicalImmBits and A64Imms::isLogicalImm will attempt to
execute shifts that perform undefined behavior. Instead of attempting
to perform the 64-bit rotation, treat it as a no-op.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179317 91177308-0d34-0410-b5e6-96231b3b80d8
As packed comparisons in AVX/SSE produce all 0s or all 1s in each SIMD lane,
vector select could be simplified to AND/OR or removed if one or both values
being selected is all 0s or all 1s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179267 91177308-0d34-0410-b5e6-96231b3b80d8
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179266 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is revised based on patch from Victor Umansky
<victor.umansky@intel.com>. More cases are handled in X86's bool
simplification, i.e.
- SETCC_CARRY
- value is truncated to i1 with AND
As a by-product, PR5443 is also fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179265 91177308-0d34-0410-b5e6-96231b3b80d8
Because of how predication in implemented on PPC (only for branches), I think
that this is the right thing to do. No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179252 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for the COFF relocation types IMAGE_REL_I386_DIR32NB and
IMAGE_REL_AMD64_ADDR32NB for 32- and 64-bit respectively. These are
similar to normal 4-byte relocations except that they do not include
the base address of the image.
Image-relative relocations are used for debug information (32-bit) and
SEH unwind tables (64-bit).
A new MCSymbolRef variant called 'VK_COFF_IMGREL32' is introduced to
specify such relocations. For AT&T assembly, this variant can be accessed
using the symbol suffix '@imgrel'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179240 91177308-0d34-0410-b5e6-96231b3b80d8
into the operand array of the start of the memory reference descriptor.
Additional code in EncodeInstruction provides an additional adjustment.
This patch places that additional code in a separate function,
called getOperandBias, so that any caller of getMemoryOperandNo
can also call getOperandBias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179211 91177308-0d34-0410-b5e6-96231b3b80d8
wasn't always the start of the operand. If there was a symbol reference, then
Start pointed to that token. It's very likely there are other places that need
to be updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179210 91177308-0d34-0410-b5e6-96231b3b80d8
I've not seen this happen in practice, and probably can't until we start
allowing decrement-counter-based conditional branches to be double predicated,
but just in case, don't allow predication of a diamond in which both sides have
ctr-defining branches. Even though the branching behavior of these can be
predicated, the counter-decrementing behavior cannot be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179199 91177308-0d34-0410-b5e6-96231b3b80d8
Test cases that regressed due to r179115, plus a few more, were added in
r179182. Original commit message below:
[ms-inline asm] Use parsePrimaryExpr in lieu of parseExpression if we need to
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
Part of rdar://13611297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179187 91177308-0d34-0410-b5e6-96231b3b80d8
Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179185 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions aren't universally available, but depend on a specific
extension to the normal ARM architecture (rather than, say, v6/v7/...) so a new
feature is appropriate.
This also enables the feature by default on A-class cores which usually have
these extensions, to avoid breaking existing code and act as a sensible
default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179171 91177308-0d34-0410-b5e6-96231b3b80d8
Depending on the number of bits set in the writemask.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179166 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179165 91177308-0d34-0410-b5e6-96231b3b80d8
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179164 91177308-0d34-0410-b5e6-96231b3b80d8
This adds in-principle support for if-converting the bctr[l] instructions.
These instructions are used for indirect branching. It seems, however, that the
current if converter will never actually predicate these. To do so, it would
need the ability to hoist a few setup insts. out of the conditionally-executed
block. For example, code like this:
void foo(int a, int (*bar)()) { if (a != 0) bar(); }
becomes:
...
beq 0, .LBB0_2
std 2, 40(1)
mr 12, 4
ld 3, 0(4)
ld 11, 16(4)
ld 2, 8(4)
mtctr 3
bctrl
ld 2, 40(1)
.LBB0_2:
...
and it would be safe to do all of this unconditionally with a predicated
beqctrl instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179156 91177308-0d34-0410-b5e6-96231b3b80d8
Modifier 'D' is to use the second word of a double integer.
We had previously implemented the pure register varient of
the modifier and this patch implements the memory reference.
#include "stdio.h"
int b[8] = {0,1,2,3,4,5,6,7};
void main()
{
int i;
// The first word. Notice, no 'D'
{asm (
"lw %0,%1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
// The second word
{asm (
"lw %0,%D1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179135 91177308-0d34-0410-b5e6-96231b3b80d8
This enables us to form predicated branches (which are the same conditional
branches we had before) and also a larger set of predicated returns (including
instructions like bdnzlr which is a conditional return and loop-counter
decrement all in one).
At the moment, if conversion does not capture all possible opportunities. A
simple example is provided in early-ret2.ll, where if conversion forms one
predicated return, and then the PPCEarlyReturn pass picks up the other one. So,
at least for now, we'll keep both mechanisms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179134 91177308-0d34-0410-b5e6-96231b3b80d8