fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143206 91177308-0d34-0410-b5e6-96231b3b80d8
Don't assume APInt::getRawData() would hold target-aware endianness nor host-compliant endianness. rawdata[0] holds most lower i64, even on big endian host.
FIXME: Add a testcase for big endian target.
FIXME: Ditto on CompileUnit::addConstantFPValue() ?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143194 91177308-0d34-0410-b5e6-96231b3b80d8
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143188 91177308-0d34-0410-b5e6-96231b3b80d8
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143177 91177308-0d34-0410-b5e6-96231b3b80d8
trying to legalize the operand types when only the result type
is required to be legalized - the type legalization machinery
will get round to the operands later if they need legalizing.
There can be a point to legalizing operands in parallel with
the result: when this saves compile time or results in better
code. There was only one case in which this was true: when
the operand is also split, so keep the logic for that bit.
As a result of this change, additional operand legalization
methods may need to be introduced to handle nodes where the
result and operand types can differ, like SIGN_EXTEND, but
the testsuite doesn't contain any tests where this is the case.
In any case, it seems better to require such methods (and die
with an assert if they doesn't exist) than to quietly produce
wrong code if we forgot to special case the node in
SplitVecRes_UnaryOp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143026 91177308-0d34-0410-b5e6-96231b3b80d8
This code makes different decisions when compiled into x87 instructions
because of different rounding behavior. That caused phase 2/3
miscompares on 32-bit Linux when the phase 1 compiler was built with gcc
(using x87), and the phase 2 compiler was built with clang (using SSE).
This fixes PR11200.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143006 91177308-0d34-0410-b5e6-96231b3b80d8
An MBB which branches to an EH landing pad shouldn't be considered for tail merging.
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143001 91177308-0d34-0410-b5e6-96231b3b80d8
down to this commit. Original commit message:
An MBB which branches to an EH landing pad shouldn't be considered for tail merging.
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142920 91177308-0d34-0410-b5e6-96231b3b80d8
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142891 91177308-0d34-0410-b5e6-96231b3b80d8
to get important constant branch probabilities and use them for finding
the best branch out of a set of possibilities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142762 91177308-0d34-0410-b5e6-96231b3b80d8
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.
The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.
As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.
Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.
The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142743 91177308-0d34-0410-b5e6-96231b3b80d8
The assumption in the back-end is that PHIs are not allowed at the start of the
landing pad block for SjLj exceptions.
<rdar://problem/10313708>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142689 91177308-0d34-0410-b5e6-96231b3b80d8
ZExtPromotedInteger and SExtPromotedInteger based on the operation we legalize.
SetCC return type needs to be legalized via PromoteTargetBoolean.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142660 91177308-0d34-0410-b5e6-96231b3b80d8
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.
This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.
Test is updated to include both basic loop alignment and nested loop
alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142645 91177308-0d34-0410-b5e6-96231b3b80d8
block frequency analyses. This differs substantially from the existing
block-placement pass in LLVM:
1) It operates on the Machine-IR in the CodeGen layer. This exposes much
more (and more precise) information and opportunities. Also, the
results are more stable due to fewer transforms ocurring after the
pass runs.
2) It uses the generalized probability and frequency analyses. These can
model static heuristics, code annotation derived heuristics as well
as eventual profile loading. By basing the optimization on the
analysis interface it can work from any (or a combination) of these
inputs.
3) It uses a more aggressive algorithm, both building chains from tho
bottom up to maximize benefit, and using an SCC-based walk to layout
chains of blocks in a profitable ordering without O(N^2) iterations
which the old pass involves.
The pass is currently gated behind a flag, and not enabled by default
because it still needs to grow some important features. Most notably, it
needs to support loop aligning and careful layout of loop structures
much as done by hand currently in CodePlacementOpt. Once it supports
these, and has sufficient testing and quality tuning, it should replace
both of these passes.
Thanks to Nick Lewycky and Richard Smith for help authoring & debugging
this, and to Jakob, Andy, Eric, Jim, and probably a few others I'm
forgetting for reviewing and answering all my questions. Writing
a backend pass is *sooo* much better now than it used to be. =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142641 91177308-0d34-0410-b5e6-96231b3b80d8
When checking the availability of instructions using the TLI, a 'promoted'
instruction IS available. It means that the value is bitcasted to another type
for which there is an operation. The correct check for the availablity of an
instruction is to check if it should be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142542 91177308-0d34-0410-b5e6-96231b3b80d8
svn r139159 caused SelectionDAG::getConstant() to promote BUILD_VECTOR operands
with illegal types, even before type legalization. For this testcase, that led
to one BUILD_VECTOR with i16 operands and another with promoted i32 operands,
which triggered the assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142370 91177308-0d34-0410-b5e6-96231b3b80d8