already makes the assumption, which is correct on ARM, that a type's alignment is
less than its alloc size. This improves codegen with Clang (which inserts a lot of
extraneous alignment specifiers) and fixes <rdar://problem/9695089>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134106 91177308-0d34-0410-b5e6-96231b3b80d8
instructions can be used to match combinations of multiply/divide and VCVT
(between floating-point and integer, Advanced SIMD). Basically the VCVT
immediate operand that specifies the number of fraction bits corresponds to a
floating-point multiply or divide by the corresponding power of 2.
For example, VCVT (floating-point to fixed-point, Advanced SIMD) can replace a
combination of VMUL and VCVT (floating-point to integer) as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vmul.f32 d16, d17, d16
vcvt.s32.f32 d16, d16
becomes:
vcvt.s32.f32 d16, d16, #3
Similarly, VCVT (fixed-point to floating-point, Advanced SIMD) can replace a
combinations of VCVT (integer to floating-point) and VDIV as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vcvt.f32.s32 d16, d16
vdiv.f32 d16, d17, d16
becomes:
vcvt.f32.s32 d16, d16, #3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133813 91177308-0d34-0410-b5e6-96231b3b80d8
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133503 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
accumulator forwarding. Specifically (from SVN log entry):
Distribute (A + B) * C to (A * C) + (B * C) to make use of NEON multiplier
accumulator forwarding:
vadd d3, d0, d1
vmul d3, d3, d2
=>
vmul d3, d0, d2
vmla d3, d1, d2
Make sure it catches cases where operand 1 is add/fadd/sub/fsub, which was
intended in the original revision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133127 91177308-0d34-0410-b5e6-96231b3b80d8
the bits being cleared by the AND are not demanded by the BFI.
The previous BFI dag combine rule was actually incorrect (or used to be
correct until BFI representation changed).
rdar://9609030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133034 91177308-0d34-0410-b5e6-96231b3b80d8
cache prefetch and now that the info from "prefetch" to "ARMPreload" is present,
only add a testcase for PLI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132978 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, don't spill dirty registers only to satisfy a hint. It is
not worth it.
The attached test case provides an example where the fast allocator
would spill a register when other registers are available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132900 91177308-0d34-0410-b5e6-96231b3b80d8
causing an assertion failure downstream. This fixes <rdar://problem/9562908>.
This really seems like it should always be set at CCState creation time, so mistakes like
this can never happen. I'll take a look at doing that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132811 91177308-0d34-0410-b5e6-96231b3b80d8
addressing mode problem mentioned in r132559.
Backend part of rdar://9037836 and part of rdar://9119939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132561 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, use simpler approach and let DBG_VALUE follow its predecessor instruction. After live debug value analysis pass, all DBG_VALUE instruction are placed at the right place. Thanks Jakob for the hint!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132483 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
Take 2, now with more basic competence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132295 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132291 91177308-0d34-0410-b5e6-96231b3b80d8
to load/store i64 values. Since there's no current support to explicitly
declare such restrictions, implement it by using specific hardcoded register
pairs during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132248 91177308-0d34-0410-b5e6-96231b3b80d8
register allocation dependent and will occasionally break. WIP in the
register allocator to model paired/etc registers.
rdar://9119939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132242 91177308-0d34-0410-b5e6-96231b3b80d8
The practical effects here are that x86-64 fast-isel can now handle trunc from i8 to i1, and ARM fast-isel can handle many more constructs involving integers narrower than 32 bits (including loads, stores, and many integer casts).
rdar://9437928 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132099 91177308-0d34-0410-b5e6-96231b3b80d8