This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185642 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for specifying condition registers and
condition register fields via expressions using the symbols
defined by the PowerISA, like "4*cr2+eq".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185633 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185632 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using the ISD::EXCEPTIONADDR and ISD::EHSELECTION when lowering
landing pad arguments. These nodes were previously legalized into
CopyFromReg nodes, but that never worked properly because the
CopyFromReg node weren't guaranteed to be scheduled at the top of the
basic block.
This meant the exception pointer and selector registers could be
clobbered before being copied to a virtual register.
This patch copies the two physical registers to virtual registers at
the beginning of the basic block, and lowers the landingpad instruction
directly to two CopyFromReg nodes reading the *virtual* registers. This
is safe because virtual registers don't get clobbered.
A future patch will remove the ISD::EXCEPTIONADDR and ISD::EHSELECTION
nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185617 91177308-0d34-0410-b5e6-96231b3b80d8
Compute the insertion point from the end of the basic block instead of
skipping labels from the front.
This caused failures in landing pads when live-in copies where inserted
before instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185616 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using the ISD::EXCEPTIONADDR and ISD::EHSELECTION when lowering
landing pad arguments. These nodes were previously legalized into
CopyFromReg nodes, but that never worked properly because the
CopyFromReg node weren't guaranteed to be scheduled at the top of the
basic block.
This meant the exception pointer and selector registers could be
clobbered before being copied to a virtual register.
This patch copies the two physical registers to virtual registers at
the beginning of the basic block, and lowers the landingpad instruction
directly to two CopyFromReg nodes reading the *virtual* registers. This
is safe because virtual registers don't get clobbered.
A future patch will remove the ISD::EXCEPTIONADDR and ISD::EHSELECTION
nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185595 91177308-0d34-0410-b5e6-96231b3b80d8
This function adds a live-in physical register to an MBB and ensures
that it is copied to a virtual register immediately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185594 91177308-0d34-0410-b5e6-96231b3b80d8
This is purely academic because GHC calls are always tail calls so the register mask will never be used; however, this change makes the code clearer and brings the ARM implementation of the GHC calling convention in line with the X86 implementation. Also, it might save someone else some time trying to figuring out what is happening...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185592 91177308-0d34-0410-b5e6-96231b3b80d8
In the ARM back-end, build_vector nodes are lowered to a target specific
build_vector that uses floating point type.
This works well, unless the inserted bitcasts survive until instruction
selection. In that case, they incur moves between integer unit and floating
point unit that may result in inefficient code.
In other words, this conversion may introduce artificial dependencies when the
code leading to the build vector cannot be completed with a floating point type.
In particular, this happens when loads are not aligned.
Before this patch, in that case, the compiler generates general purpose loads
and creates the floating point vector from them, instead of directly using the
vector unit.
The patch uses a vector friendly sequence of code when the inserted bitcasts to
floating point survived DAGCombine.
This is done by a target specific DAGCombine that changes the target specific
build_vector into a sequence of insert_vector_elt that get rid of the bitcasts.
<rdar://problem/14170854>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185587 91177308-0d34-0410-b5e6-96231b3b80d8
Before the fix Thumb2 instructions of type "add rD, rN, #imm" (T3 encoding, see ARM ARM A8.8.4) with rD and rN both being low registers (r0-r7) were classified as having the T4 encoding.
The T4 encoding doesn't have a cc_out operand so for above instructions the operand gets erroneously removed, corrupting the token stream and leading to parse errors later in the process.
This bug prevented "add r1, r7, #0xcbcbcbcb" from being assembled correctly.
Fixes <rdar://problem/14224440>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185575 91177308-0d34-0410-b5e6-96231b3b80d8
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185561 91177308-0d34-0410-b5e6-96231b3b80d8
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.
Current code makes that distinction in many, but not all places
where a single CR register value is retrieved. One missing
location is PPCRegisterInfo::lowerCRSpilling.
To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.
On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.
This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.
The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.
Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185556 91177308-0d34-0410-b5e6-96231b3b80d8
It was only passing because 'grep andpd' was not finding any andpd, but
we don't fail if part of a pipe fails.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185552 91177308-0d34-0410-b5e6-96231b3b80d8
The subroutine getCRIdxForSetCC has a parameter "Other" and comment:
If this returns with Other != -1, then the returned comparison
is an or of two simpler comparisons.
However for at least the last five years this routine has never
returned a value of Other != -1; these cases are now handled
differently to begin with.
This patch removes the parameter and the code in SelectSETCC that
attempted to handle the Other != -1 case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185541 91177308-0d34-0410-b5e6-96231b3b80d8
Previously it was able to match 'I' anywhere in the filenames of the svn info results instead of just files that where ignored or unknown to svn. This would cause 'make update' to infinitely recurse if a file was modified with I anywhere in its name since svn info would return a Path pointing to the llvm root for those files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185539 91177308-0d34-0410-b5e6-96231b3b80d8
This changes behavior of -msan-poison-stack=0 flag from not poisoning stack
allocations to actively unpoisoning them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185538 91177308-0d34-0410-b5e6-96231b3b80d8
A couple of AltiVec patterns are just specialized forms of the
generic instruction pattern, and should therefore be marked
isCodeGenOnly to avoid confusing the asm parser:
VCFSX_0, VCTUXS_0, VCFUX_0, VCTSXS_0, and V_SETALLONES.
Noticed by inspection of the generated PPCGenAsmMatcher.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185533 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the generic forms of mtspr/mfspr
for the asm parser. The compiler will continue to use
the specialized patters for mtlr etc. since those are
needed to correctly describe data flow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185532 91177308-0d34-0410-b5e6-96231b3b80d8
Add a mapping from register-based <INSN>R instructions to the corresponding
memory-based <INSN>. Use it to cut down on the number of spill loads.
Some instructions extend their operands from smaller fields, so this
required a new TSFlags field to say how big the unextended operand is.
This optimisation doesn't trigger for C(G)R and CL(G)R because in practice
we always combine those instructions with a branch. Adding a test for every
other case probably seems excessive, but it did catch a missed optimisation
for DSGF (fixed in r185435).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185529 91177308-0d34-0410-b5e6-96231b3b80d8
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185528 91177308-0d34-0410-b5e6-96231b3b80d8
Swift cores implement store barriers that are stronger than the ARM
specification but weaker than general barriers. They are, in fact, just about
enough to provide the ordering needed for atomic operations with release
semantics.
This patch makes use of that quirk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185527 91177308-0d34-0410-b5e6-96231b3b80d8