cost modeling for if-conversion. Now if only we had a way to estimate the misprediction probability.
Adjsut CodeGen/ARM/ifcvt10.ll. The pipeline on Cortex-A8 is long enough that it is still profitable
to predicate an ldm, but the shorter pipeline on Cortex-A9 makes it unprofitable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114995 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than having arbitrary cutoffs, actually try to cost model the conversion.
For now, the constants are tuned to more or less match our existing behavior, but these will be
changed to reflect realistic values as this work proceeds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114973 91177308-0d34-0410-b5e6-96231b3b80d8
Usually we wouldn't do this anyway because llvm_fenv_testexcept would return an
exception, but we have seen some cases where neither errno nor fenv detect an
exception on arm-linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114893 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114859 91177308-0d34-0410-b5e6-96231b3b80d8
My previous fix for rdar://8456371 should only apply to fmulp/faddp,
not to fmul/fadd. Instruction set orthogonality is overrated or
something.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114818 91177308-0d34-0410-b5e6-96231b3b80d8
support aligned comm. Detect when compiling for 10.4 and don't
emit an alignment for comm. THis will hopefully fix PR8198.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114817 91177308-0d34-0410-b5e6-96231b3b80d8
Splitting critical edges at the merge point only addressed part of the issue; it is also possible for non-post-domination
to occur when the path from the load to the merge has branches in it. Unfortunately, full anticipation analysis is
time-consuming, so for now approximate it. This is strictly more conservative than real anticipation, so we will miss
some cases that real PRE would allow, but we also no longer insert loads into paths where they didn't exist before. :-)
This is a very slight net positive on SPEC for me (0.5% on average). Most of the benchmarks are largely unaffected, but
when it pays off it pays off decently: 181.mcf improves by 4.5% on my machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114785 91177308-0d34-0410-b5e6-96231b3b80d8
- I believe more modern 'gas' supports a more enhanced set of arithmetic on
them, but for now the only thing we can do is emit them as data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114719 91177308-0d34-0410-b5e6-96231b3b80d8
they are in. Both ways should be equivalent, but gas produces relocations
against the section.
Roman wrote the patch, I added the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114667 91177308-0d34-0410-b5e6-96231b3b80d8
"external" even when doing lazy bitcode loading. This was broken because
a function that is not materialized fails the !isDeclaration() test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114666 91177308-0d34-0410-b5e6-96231b3b80d8
x86-32: 32-bit calls were named "call" not "calll". 64-bit calls were correctly
named "callq", so this only impacted x86-32.
This fixes rdar://8456370 - llvm-mc rejects 'calll'
This also exposes that mingw/64 is generating a 32-bit call instead of a 64-bit call,
I will file a bugzilla.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114534 91177308-0d34-0410-b5e6-96231b3b80d8