original basic block. This avoids trouble with examining
instructions in other basic blocks which haven't been
assigned registers yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106310 91177308-0d34-0410-b5e6-96231b3b80d8
ask the linker to take another look into some library or object. The case when
one might want to do this is when codegen introduces a new undefined reference.
The canonical example is libgcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106303 91177308-0d34-0410-b5e6-96231b3b80d8
basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106299 91177308-0d34-0410-b5e6-96231b3b80d8
so when IfConverter::CopyAndPredicateBlock checks to see if it should ignore
an instruction because it is a branch, it should not check if the branch is
predicated.
This case (when IgnoreBr is true) is only relevant from IfConvertTriangle,
where new branches are inserted after the block has been copied and predicated.
If the original branch is not removed, we end up with multiple conditional
branches (possibly conflicting) at the end of the block. Aside from any
immediate errors resulting from that, this confuses the AnalyzeBranch functions
so that the branches are not analyzable. That in turn causes the IfConverter to
think that the "Simple" pattern can be applied, and things go downhill fast
because the "Simple" pattern does _not_ apply if the block can fall through.
This is pretty fragile. If there are other degenerate cases where AnalyzeBranch
fails, but where the block may still fall through, the IfConverter should not
perform its "Simple" if-conversion. But, I don't know how to do that with the
current AnalyzeBranch interface, so for now, the best thing seems to be to
avoid creating branches that AnalyzeBranch cannot handle.
Evan, please review!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106291 91177308-0d34-0410-b5e6-96231b3b80d8
does for {flags}. If we create virtual registers of the CCR class, RegAllocFast
may try to spill them, and we can't do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106289 91177308-0d34-0410-b5e6-96231b3b80d8
switch from this:
if (TimePassesIsEnabled) {
NamedRegionTimer T(Name, GroupName);
do_something();
} else {
do_something(); // duplicate the code, this time without a timer!
}
to this:
{
NamedRegionTimer T(Name, GroupName, TimePassesIsEnabled);
do_something();
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106285 91177308-0d34-0410-b5e6-96231b3b80d8
be done incrementally and intermixed with the adding of more
AVX instructions. This is a first step in that direction
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106251 91177308-0d34-0410-b5e6-96231b3b80d8
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106243 91177308-0d34-0410-b5e6-96231b3b80d8
for the moment. The implementation of the libcall will follow.
Currently, the llvm-gcc knows when the intrinsics can be correctly handled by
the back end and only generates them in those cases, issuing libcalls directly
otherwise. That's too much coupling. The intrinsics should always be
generated and the back end decide how to handle them, be it with a libcall,
inline code, or whatever. This patch is a step in that direction.
rdar://8097623
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106227 91177308-0d34-0410-b5e6-96231b3b80d8