Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196568 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
lowering only for load/stores to scalar allocas. The resulting values
confuse the backend and don't add anything because we can describe
array-allocas with a dbg.declare intrinsic just fine.
rdar://problem/15464571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195052 91177308-0d34-0410-b5e6-96231b3b80d8
Generally speaking, control flow paths with error reporting calls are cold.
So far, error reporting calls are calls to perror and calls to fprintf,
fwrite, etc. with stderr as the stream. This can be extended in the future.
The primary motivation is to improve block placement (the cold attribute
affects the static branch prediction heuristics).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194943 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r193356, it caused PR17781.
A reduced test case covering this regression has been added to the test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193955 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an SimplifyLibCalls case which converts the special __sinpi and
__cospi (float & double variants) into a __sincospi_stret where appropriate to
remove duplicated work.
Patch by Tim Northover
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193943 91177308-0d34-0410-b5e6-96231b3b80d8
Given that backend does not handle "invoke asm" correctly ("invoke asm" will be
handled by SelectionDAGBuilder::visitInlineAsm, which does not have the right
setup for LPadToCallSiteMap) and we already made the assumption that inline asm
does not throw in InstCombiner::visitCallSite, we are going to make the same
assumption in Inliner to make sure we don't convert "call asm" to "invoke asm".
If it becomes necessary to add support for "invoke asm" later on, we will need
to modify the backend as well as remove the assumptions that inline asm does
not throw.
Fix rdar://15317907
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193808 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches GlobalStatus to analyze a call that uses the global value as
a callee, not as an argument.
With this change internalize call handle the common use of linkonce_odr
functions. This reduces the number of linkonce_odr functions in a LTO build of
clang (checked with the emit-llvm gold plugin option) from 1730 to 60.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193436 91177308-0d34-0410-b5e6-96231b3b80d8
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.
This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193090 91177308-0d34-0410-b5e6-96231b3b80d8
A landing pad can be jumped to only by the unwind edge of an invoke
instruction. If we eliminate a partially redundant load in a landing pad, it
will create a basic block that violates this constraint. It then leads to other
problems down the line if it tries to merge that basic block with the landing
pad. Avoid this by not eliminating the load in a landing pad.
PR17621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193064 91177308-0d34-0410-b5e6-96231b3b80d8
One optimization simplify-cfg performs is the converting of switches to
lookup tables if the switch has > 4 cases. This is done by:
1. Finding the max/min case value and calculating the switch case range.
2. Create a lookup table basic block.
3. Perform a check in the switch's BB to see if the input value is in
the switch's case range. If the input value satisfies said predicate
branch to the lookup table BB, otherwise branch to the switch's default
destination BB using the default value as the result.
The conditional check consists of subtracting the min case value of the
table from any input iN value and then ensuring that said value is
unsigned less than the size of the lookup table represented as an iN
value.
If the lookup table is a covered lookup table, the size of the table will be N
which is 0 as an iN value. Thus the comparison will be an `icmp ult` of an iN
value against 0 which is always false yielding the incorrect result.
This patch fixes this problem by recognizing if we have a covered lookup table
and if we do, unconditionally jumps to the lookup table BB since the covering
property of the lookup table implies no input values could not be handled by
said BB.
rdar://15268442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193045 91177308-0d34-0410-b5e6-96231b3b80d8
If the predecessor's being spliced into a landing pad, then we need the PHIs to
come first and the rest of the predecessor's code to come *after* the landing
pad instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193035 91177308-0d34-0410-b5e6-96231b3b80d8
UpdatePHINodes has an optimization to reuse an existing PHI node, where it
first deletes all of its entries and then replaces them. Unfortunately, in the
case where we had duplicate predecessors (which are allowed so long as the
associated PHI entries have the same value), the loop removing the existing PHI
entries from the to-be-reused PHI would assert (if that PHI was not the one
which had the duplicates).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192001 91177308-0d34-0410-b5e6-96231b3b80d8
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191835 91177308-0d34-0410-b5e6-96231b3b80d8
This makes using array_pod_sort significantly safer. The implementation relies
on function pointer casting but that should be safe as we're dealing with void*
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191175 91177308-0d34-0410-b5e6-96231b3b80d8
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190328 91177308-0d34-0410-b5e6-96231b3b80d8
The existing code missed some edge cases when e.g. we're going to emit sqrtf but
only the availability of sqrt was checked. This happens on odd platforms like
windows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189724 91177308-0d34-0410-b5e6-96231b3b80d8
extremely subtle miscompilations (such as a load getting replaced with
the value stored *below* the load within a basic block) related to
promoting an alloca to an SSA value, there is the dim possibility that
you hit this. Please let me know if you won this unfortunate lottery.
The first half of mem2reg's core logic (as it is used both in the
standalone mem2reg pass and in SROA) builds up a mapping from
'Instruction *' to the index of that instruction within its basic block.
This allows quickly establishing which store dominate a particular load
even for large basic blocks. We cache this information throughout the
run of mem2reg over a function in order to amortize the cost of
computing it.
This is not in and of itself a strange pattern in LLVM. However, it
introduces a very important constraint: absolutely no instruction can be
deleted from the program without updating the mapping. Otherwise a newly
allocated instruction might get the same pointer address, and then end
up with a wrong index. Yes, LLVM routinely suffers from a *single
threaded* variant of the ABA problem. Most places in LLVM don't find
avoiding this an imposition because they don't both delete and create
new instructions iteratively, but mem2reg *loves* to do this... All the
time. Fortunately, the mem2reg code was really careful about updating
this cache to handle this eventuallity... except when it comes to the
debug declare intrinsic. Oops. The fix is to invalidate that pointer in
the cache when we delete it, the same as we do when deleting alloca
instructions and other instructions.
I've also caused the same bug in new code while working on a fix to
PR16867, so this seems to be a really unfortunate pattern. Hopefully in
subsequent patches the deletion of dead instructions can be consolidated
sufficiently to make it less likely that we'll see future occurences of
this bug.
Sorry for not having a test case, but I have literally no idea how to
reliably trigger this kind of thing. It may be single-threaded, but it
remains an ABA problem. It would require a really amazing number of
stars to align.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188367 91177308-0d34-0410-b5e6-96231b3b80d8
However, opt -O2 doesn't run mem2reg directly so nobody noticed until r188146
when SROA started sending more things directly down the PromoteMemToReg path.
In order to revert r187191, I also revert dependent revisions r187296, r187322
and r188146. Fixes PR16867. Does not add the testcases from that PR, but both
of them should get added for both mem2reg and sroa when this revert gets
unreverted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188327 91177308-0d34-0410-b5e6-96231b3b80d8