Stop using `DIDescriptor` and its subclasses in the `DebugInfoFinder`
API, as well as the rest of the API hanging around in `DebugInfo.h`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235240 91177308-0d34-0410-b5e6-96231b3b80d8
Previously DebugInfoPDB could only load data for a PDB given a
path to the PDB. It could not open an EXE and find the matching
PDB and verify it matched, etc. This patch adds support for that
so that we can simply load debug information for a PDB directly.
Additionally, this patch extends DebugInfoPDB to support getting
source and line information for symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235237 91177308-0d34-0410-b5e6-96231b3b80d8
The implementation of this GEP::getResultElementType will be refactored
to either rely on a member variable, or recompute the value from the
indicies (any preferences?).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235236 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to r235222, but for the weak symbol case.
In an "ideal" assembler/object format an expression would always refer to the
final value and A-B would only be computed from a section in the same
comdat as A and B with A and B strong.
Unfortunately that is not the case with debug info on ELF, so we need an
heuristic. Since we need an heuristic, we may as well use the same one as
gas:
* call weak_sym : produces a relocation, even if in the same section.
* A - weak_sym and weak_sym -A: don't produce a relocation if we can
compute it.
This fixes pr23272 and changes the fix of pr22815 to match what gas does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235227 91177308-0d34-0410-b5e6-96231b3b80d8
Now (with a few carefully placed suppressions relating to general type
serialization, etc) we can round trip a simple load through bitcode and
textual IR without calling getElementType on a PointerType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235221 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235215 91177308-0d34-0410-b5e6-96231b3b80d8
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file.
The saved bitcode file is already internalized, so we can call
lto_codegen_set_should_internalize and skip running internalization again.
rdar://20227235
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235211 91177308-0d34-0410-b5e6-96231b3b80d8
The v1i128 type is needed for the quadword add/substract instructions introduced
in POWER8. Futhermore, the PowerPC ABI specifies that parameters of type v1i128
are to be passed in a single vector register, while parameters of type i128 are
passed in pairs of GPRs. Thus, it is necessary to be able to differentiate
between v1i128 and i128 in LLVM.
http://reviews.llvm.org/D8564
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235198 91177308-0d34-0410-b5e6-96231b3b80d8
The i128 type is needed as a builtin type in order to support the v1i128 vector
type. The PowerPC ABI requires that the i128 and v1i128 types are handled
differently when passed as parameters to functions (i128 is passed in pairs of
GPRs, v1i128 is passed in a single vector register).
http://reviews.llvm.org/D8564
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235196 91177308-0d34-0410-b5e6-96231b3b80d8
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235154 91177308-0d34-0410-b5e6-96231b3b80d8
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235145 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235132 91177308-0d34-0410-b5e6-96231b3b80d8
As a step toward killing `DIDescriptor` and its subclasses, remove it
from the `DIBuilder` API. Replace the subclasses with appropriate
pointers from the new debug info hierarchy. There are a couple of
possible surprises in type choices for out-of-tree frontends:
- Subroutine types: `MDSubroutineType`, not `MDCompositeTypeBase`.
- Composite types: `MDCompositeType`, not `MDCompositeTypeBase`.
- Scopes: `MDScope`, not `MDNode`.
- Generic debug info nodes: `DebugNode`, not `MDNode`.
This is part of PR23080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235111 91177308-0d34-0410-b5e6-96231b3b80d8
Required some tweaking of ValueMap to accommodate a move-only value
type. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235091 91177308-0d34-0410-b5e6-96231b3b80d8
Delete `DIRef<>`, and replace the remaining uses of it with
`TypedDebugNodeRef<>`. To minimize code churn, I've added typedefs from
`MDTypeRef` to `DITypeRef` (etc.).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235071 91177308-0d34-0410-b5e6-96231b3b80d8
PR23080 is almost finished. With this commit, there's no consequential
API in `DIDescriptor` and its subclasses. What's left?
- Default-constructed to `nullptr`.
- Handy `const_cast<>` (constructed from `const`, but accessors are
non-`const`).
I think the safe way to catch those is to delete the classes and fix
compile errors. That'll be my next step, after I delete the `DITypeRef`
(etc.) wrapper around `MDTypeRef`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235069 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235064 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the accessors of `DIDerivedType` that downcast to
`MDDerivedType`, shifting the `cast<MDDerivedType>` into the callers.
Also remove `DIType::isValid()`, which is really just a check against
`nullptr` at this point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235059 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing gutting `DIDescriptor` subclasses; this edition,
`DICompileUnit` and `DIFile`. In the name of PR23080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235055 91177308-0d34-0410-b5e6-96231b3b80d8
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235050 91177308-0d34-0410-b5e6-96231b3b80d8
Before we start to rely on valid `!dbg` attachments, add a check to the
verifier that `@llvm.dbg.*` intrinsics always have one. Also check that
the `scope:` fields point at the same `MDSubprogram`.
This is in the context of PR22778. The check that the `inlinedAt:`
fields agree has baked for a while (since r234021), so I'll kill [1] the
`MDLocalVariable::getInlinedAt()` field soon.
[1]: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150330/269387.html
Unfortunately, that means it's impossible to keep the current `Verifier`
checks, which rely on comparing `inlinedAt:` fields. We'll be able to
keep the checks I'm adding here.
If this breaks your out-of-tree testcases, the upgrade script
(add-dbg-to-intrinsics.sh) attached to PR22778 that I used for r235040
might fix them for you.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235048 91177308-0d34-0410-b5e6-96231b3b80d8
Change `DIBuilder::insertDeclare()` and `insertDbgValueIntrinsic()` to
take an `MDLocation*`/`DebugLoc` parameter which it attaches to the
created intrinsic. Assert at creation time that the `scope:` field's
subprogram matches the variable's. There's a matching `clang` commit to
use the API.
The context for this is PR22778, which is removing the `inlinedAt:`
field from `MDLocalVariable`, instead deferring to the `!dbg` location
attached to the debug info intrinsic. The best way to ensure we always
have a `!dbg` attachment is to require one at creation time. I'll be
adding verifier checks next, but this API change is the best way to
shake out frontend bugs.
Note: I added an `llvm_unreachable()` in `bindings/go` and passed in
`nullptr` for the `DebugLoc`. The `llgo` folks will eventually need to
pass a valid `DebugLoc` here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235041 91177308-0d34-0410-b5e6-96231b3b80d8
signature match the other layers.
This makes it possible to compose other layers (e.g. IRTransformLayer) on top
of CompileOnDemandLayer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235029 91177308-0d34-0410-b5e6-96231b3b80d8
That's the way it works now, since toVector does not clear the given
SmallString before printing to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235000 91177308-0d34-0410-b5e6-96231b3b80d8
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them. There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.
As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234973 91177308-0d34-0410-b5e6-96231b3b80d8
Now the callers of `PrintModulePass()` (etc.) that care about use-list
order in assembly pass in the flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234969 91177308-0d34-0410-b5e6-96231b3b80d8
Pull the `-preserve-ll-uselistorder` bit up through all the callers of
`Module::print()`. I converted callers of `operator<<` to
`Module::print()` where necessary to pull the bit through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234968 91177308-0d34-0410-b5e6-96231b3b80d8
Change the callers of `WriteToBitcodeFile()` to pass `true` or
`shouldPreserveBitcodeUseListOrder()` explicitly. I left the callers
that want to send `false` alone.
I'll keep pushing the bit higher until hopefully I can delete the global
`cl::opt` entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234957 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There are a number of passes that could be sped up by using dominator tree DFS numbers to order or compare things across multiple bbs
(MemorySSA, MergedLoadStoreMotion, EarlyCSE, Sinking, GVN, NewGVN, for starters :P).
For example, GVN/CSE elimination can be done with a simple stack/etc (instead of full-on scoped hash table or repeated leader set walks)
if the DFS pair is stored next to leaders.
The dominator tree keeps them, and the DOM tree nodes expose them as public, but you have no guarantee they are up to date (and in fact,
if you split blocks or whatever during your pass, they definitely won't be)
This means passes either have to compute their own versions[1], or make 32 queries, or ....
Rather than try to hide this, i just made the API public, and make it do nothing if the numbers are already valid.
[1] Which we want as a non-recursive walk, which is not pretty, sadly,
because it cannot use the depth first iterators since you don't get called on the way back up. So you either have to do one walk with po_iterator
and one with df_iterator, or write your own non-recursive walk that looks identical to the one in updateDFSNumbers.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8946
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234930 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r234850, add an implicit conversion from
`DISubprogram` to `DIScope` to support Kaleidoscope Ch. 8. This also
reverts that band-aid from r234890.
(/me learns *again* to build Kaleidoscope before commit...)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234904 91177308-0d34-0410-b5e6-96231b3b80d8