Commit Graph

5 Commits

Author SHA1 Message Date
David Majnemer
cc714e2142 Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239940 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 20:52:32 +00:00
Petar Jovanovic
a703f676f7 [Mips64] Add support for MCJIT for MIPS64r2 and MIPS64r6
Add support for resolving MIPS64r2 and MIPS64r6 relocations in MCJIT.

Patch by Vladimir Radosavljevic.

Differential Revision: http://reviews.llvm.org/D9667


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238424 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-28 13:48:41 +00:00
David Blaikie
32b845d223 [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235145 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-16 23:24:18 +00:00
Lang Hames
89ddc1b326 [Orc][MCJIT] Remove the small code model regression tests.
These regression tests are supposed to test small code model support, but have
been XFAIL'd because we don't have an in-tree memory manager that can guarantee
a small-code-model compatible memory layout. Unfortunately, they can
occasionally pass if they get lucky with memory allocation, causing unexpected
passes on the bots. That's not very helpful.

I'm going to remove these until we have the infrastructure (small-code-model
compatible memory manager) to run them properly.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233722 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-31 18:19:25 +00:00
Lang Hames
47fd5639bc [Orc][lli] Add a very simple Orc-based lazy JIT to lli.
This ensures that we're building and testing the CompileOnDemand layer, at least
in a basic way.

Currently x86-64 only, and with limited to no library calls enabled (depending
on host platform). Patches welcome. ;)

To enable access to the lazy JIT, this patch replaces the '-use-orcmcjit' lli
option with a new option:
'-jit-kind={ mcjit | orc-mcjit | orc-lazy }'.

All regression tests are updated to use the new option, and one trivial test of
the new lazy JIT is added.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233182 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-25 12:11:48 +00:00