and short. Well, it's kinda short. Definitely nasty and brutish.
The front-end generates the register/unregister calls into the SjLj runtime,
call-site indices and landing pad dispatch. The back end fills in the LSDA
with the call-site information provided by the front end. Catch blocks are
not yet implemented.
Built on Darwin and verified no llvm-core "make check" regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78625 91177308-0d34-0410-b5e6-96231b3b80d8
This definitely slows down asm output so put it under an -asm-exuberant
flag.
This information is useful when doing static analysis of performance
issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78567 91177308-0d34-0410-b5e6-96231b3b80d8
instead of syntactically as a string. This means that it keeps track of the
segment, section, flags, etc directly and asmprints them in the right format.
This also includes parsing and validation support for llvm-mc and
"attribute(section)", so we should now start getting errors about invalid
section attributes from the compiler instead of the assembler on darwin.
Still todo:
1) Uniquing of darwin mcsections
2) Move all the Darwin stuff out to MCSectionMachO.[cpp|h]
3) there are a few FIXMEs, for example what is the syntax to get the
S_GB_ZEROFILL segment type?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78547 91177308-0d34-0410-b5e6-96231b3b80d8
take the table vectors as separate arguments, instead of the previous
approach where they were combined into one big vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78525 91177308-0d34-0410-b5e6-96231b3b80d8
2. Move section switch printing to MCSection virtual method which takes a
TAI. This eliminates textual formatting stuff from TLOF.
3. Eliminate SwitchToSectionDirective, getSectionFlagsAsString, and
TLOFELF::AtIsCommentChar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78510 91177308-0d34-0410-b5e6-96231b3b80d8
A TAI hook is appropriate in this case because this is just an
asm syntax issue, not a semantic difference. TLOF should model
the semantics of the section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78498 91177308-0d34-0410-b5e6-96231b3b80d8
- Part of optimal static profiling patch sequence by Andreas Neustifter.
- Store edge, block, and function information separately for each functions
(instead of in one giant map).
- Return frequencies as double instead of int, and use a sentinel value for
missing information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78477 91177308-0d34-0410-b5e6-96231b3b80d8
Handle large integers, x86_fp80, ConstantAggregateZero, and two more ConstantExpr:
GetElementPtr and IntToPtr
Set SHF_MERGE bit for mergeable strings
Avoid zero initialized strings to be classified as a bss symbol
Don't allow common symbols to be classified as STB_WEAK
Add a constant to be used as a global value offset in data relocations
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78476 91177308-0d34-0410-b5e6-96231b3b80d8
Now there is no special treatment of instructions that redefine part of a
super-register. Instead, the super-register is marked with <imp-use,kill> and
<imp-def>. For instance, from LowerSubregs on ARM:
subreg: CONVERTING: %Q1<def> = INSERT_SUBREG %Q1<undef>, %D1<kill>, 5
subreg: %D2<def> = FCPYD %D1<kill>, 14, %reg0, %Q1<imp-def>
subreg: CONVERTING: %Q1<def> = INSERT_SUBREG %Q1, %D0<kill>, 6
subreg: %D3<def> = FCPYD %D0<kill>, 14, %reg0, %Q1<imp-use,kill>, %Q1<imp-def>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78466 91177308-0d34-0410-b5e6-96231b3b80d8
Verify that early clobber registers and their aliases are not used.
All changes to RegsAvailable are now done as a transaction so the order of
operands makes no difference.
The included test case is from PR4686. It has behaviour that was dependent on the order of operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78465 91177308-0d34-0410-b5e6-96231b3b80d8
as vector shuffles did not work out well. Shuffles that produce double-wide
vectors accurately represent the operation but make it hard to do anything
with the results. I considered splitting them up into 2 shuffles, one to
write each register separately, but there doesn't seem to be a good way to
reunite them for codegen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78437 91177308-0d34-0410-b5e6-96231b3b80d8
driven by TAI to being static, driven by tblgen. This means that a
target doesn't get impacted by this stuff at all if it doesn't opt
into it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78427 91177308-0d34-0410-b5e6-96231b3b80d8
The use case is if you have a wrapper class:
class Base {
void *Ptr;
public:
Base() : Ptr(0) { }
operator bool() const { return Ptr; }
.....
}
and sub-wrappers that have exactly the same size:
class Sub : public Base {
public:
....
static bool classof(const Base*);
}
and in the code you would do:
void f(Base b) {
Sub sub = dyn_cast<Sub>(b);
if (sub) {
....
}
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78424 91177308-0d34-0410-b5e6-96231b3b80d8
http://llvm.org/viewvc/llvm-project?view=rev&revision=78127, I'm changing the
ExecutionEngine's global mappings to hold AssertingVH<const GlobalValue>. That
way, if unregistering a mapping fails to actually unregister it, we'll get an
assert. Running the jit nightly tests didn't uncover any actual instances of
the problem.
This also uncovered the fact that AssertingVH<const X> didn't work, so I fixed
that too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78400 91177308-0d34-0410-b5e6-96231b3b80d8
LoopDependenceAnalysis::getLoops is currently O(N*M) for a loop-nest of
depth N and a compound SCEV of M atomic SCEVs. As both N and M will
typically be very small, this should not be a problem. If it turns out
to be one, rewriting getLoops as SCEVVisitor will reduce complexity to
O(M).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78394 91177308-0d34-0410-b5e6-96231b3b80d8