Summary:
Before this change the instrumented code before Ret instructions looked like:
<Unpoison Frame Redzones>
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
Now the instrumented code looks like:
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
else
<Unpoison Frame Redzones>
Reviewers: eugenis
Reviewed By: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197907 91177308-0d34-0410-b5e6-96231b3b80d8
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197677 91177308-0d34-0410-b5e6-96231b3b80d8
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187283 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162841 91177308-0d34-0410-b5e6-96231b3b80d8
Allow the "SplitCriticalEdge" function to split the edge to a landing pad. If
the pass is *sure* that it thinks it knows what it's doing, then it may go ahead
and specify that the landing pad can have its critical edge split. The loop
unswitch pass is one of these passes. It will split the critical edges of all
edges coming from a loop to a landing pad not within the loop. Doing so will
retain important loop analysis information, such as loop simplify.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155817 91177308-0d34-0410-b5e6-96231b3b80d8
This handles the case in which LSR rewrites an IV user that is a phi and
splits critical edges originating from a switch.
Fixes <rdar://problem/6453893> LSR is not splitting edges "nicely"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141059 91177308-0d34-0410-b5e6-96231b3b80d8
SplitLandingPadPredecessors is similar to SplitBlockPredecessors in that it
splits the current block and attaches a set of predecessors to the new basic
block. However, it differs from SplitBlockPredecessors in that it's specifically
designed to handle landing pad blocks.
Two new basic blocks are created: one that is has the vector of predecessors as
its predecessors and one that has the remaining predecessors as its
predecessors. Those two new blocks then receive a cloned copy of the landingpad
instruction from the original block. The landingpad instructions are joined in a
PHI, etc. Like SplitBlockPredecessors, it updates the LLVM IR, AliasAnalysis,
DominatorTree, DominanceFrontier, LoopInfo, and LCCSA analyses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138014 91177308-0d34-0410-b5e6-96231b3b80d8
phi nodes. It is called from MergeBlockIntoPredecessor which is
called from GVN, which claims to preserve these.
I'm skeptical that this is the actual problem behind PR8954, but
this is a stab in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123222 91177308-0d34-0410-b5e6-96231b3b80d8
RecursivelyDeleteDeadPHINode, and DeleteDeadPHIs return a flag
indicating whether they made any changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92732 91177308-0d34-0410-b5e6-96231b3b80d8
MergeBlockIntoPredecessor. This makes SimplifyCFG slightly more aggressive,
and makes it unnecessary for LoopUnroll to have its own copy of this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85667 91177308-0d34-0410-b5e6-96231b3b80d8
that get created during loop unswitching, and fix SplitBlockPredecessors'
LCSSA updating code to create new PHIs instead of trying to just move
existing ones.
Also, optimize Loop::verifyLoop, since it gets called a lot. Use
searches on a sorted list of blocks instead of calling the "contains"
function, as is done in other places in the Loop class, since "contains"
does a linear search. Also, don't call verifyLoop from LoopSimplify or
LCSSA, as the PassManager is already calling verifyLoop as part of
LoopInfo's verifyAnalysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81221 91177308-0d34-0410-b5e6-96231b3b80d8
that these passes are properly preserved.
Fix several transformation passes that claimed to preserve LoopSimplify
form but weren't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80926 91177308-0d34-0410-b5e6-96231b3b80d8
CallbackVH, with fixes. allUsesReplacedWith need to
walk the def-use chains and invalidate all users of a
value that is replaced. SCEVs of users need to be
recalcualted even if the new value is equivalent. Also,
make forgetLoopPHIs walk def-use chains, since any
SCEV that depends on a PHI should be recalculated when
more information about that PHI becomes available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70927 91177308-0d34-0410-b5e6-96231b3b80d8
makes ScalarEvolution::deleteValueFromRecords, and it's code that
subtly needed to be called before ReplaceAllUsesWith, unnecessary.
It also makes ValueDeletionListener unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70645 91177308-0d34-0410-b5e6-96231b3b80d8
of returning a list of pointers to Values that are deleted. This was
unsafe, because the pointers in the list are, by nature of what
RecursivelyDeleteDeadInstructions does, always dangling. Replace this
with a simple callback mechanism. This may eventually be removed if
all clients can reasonably be expected to use CallbackVH.
Use this to factor out the dead-phi-cycle-elimination code from LSR
utility function, and generalize it to use the
RecursivelyDeleteTriviallyDeadInstructions utility function.
This makes LSR more aggressive about eliminating dead PHI cycles;
adjust tests to either be less trivial or to simply expect fewer
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70636 91177308-0d34-0410-b5e6-96231b3b80d8
info with it.
Don't count debug info insns against the scan maximum
in FindAvailableLoadedValue (lest they affect codegen).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65910 91177308-0d34-0410-b5e6-96231b3b80d8
as a global helper function. At the same type, switch it from taking
a vector of predecessors to an arbitrary sequential input. This allows
us to switch LoopSimplify to use a SmallVector for various temporary
vectors that it passed into SplitBlockPredecessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50020 91177308-0d34-0410-b5e6-96231b3b80d8