call must not be callee-saved; following x86, add a new
regclass to represent this. Also fixes a couple of bugs.
Still disabled by default; Thumb doesn't work yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106053 91177308-0d34-0410-b5e6-96231b3b80d8
flag argument to addReg is not the same format as flags attached
to MachineOperand, although both have the same info. I don't
think this actually mattered; the bootstrap failure did not
reproduce on the next run anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106049 91177308-0d34-0410-b5e6-96231b3b80d8
SimpleRegisterCoalescing::JoinIntervals() uses CoalescerPair to determine if a
copy is coalescable, and in very rare cases it can return true where LHS is not
live - the coalescable copy can come from an alias of the physreg in LHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106021 91177308-0d34-0410-b5e6-96231b3b80d8
combined to an insert_subreg, i.e., where the destination register is larger
than the source. We need to check that the subregs can be composed for that
case in a symmetrical way to the case when the destination is smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106004 91177308-0d34-0410-b5e6-96231b3b80d8
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105998 91177308-0d34-0410-b5e6-96231b3b80d8
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105997 91177308-0d34-0410-b5e6-96231b3b80d8
replacing the overly conservative checks that I had introduced recently to
deal with correctness issues. This makes a pretty noticable difference
in our testcases where reg_sequences are used. I've updated one test to
check that we no longer emit the unnecessary subreg moves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105991 91177308-0d34-0410-b5e6-96231b3b80d8
containing the target address, an input, into an output. I don't
think this actually broke anything on x86 (it does on ARM), but
it's wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105986 91177308-0d34-0410-b5e6-96231b3b80d8
immediate" operands. These functions have so far only been used for VMOV
but they also apply to other NEON instructions with modified immediate
operands. No functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105969 91177308-0d34-0410-b5e6-96231b3b80d8
- Rename ExactHazardRecognizer to PostRAHazardRecognizer and move its header to include to allow targets to extend it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105959 91177308-0d34-0410-b5e6-96231b3b80d8
symbols as declarations in the X86 backend. This would manifest
on darwin x86-32 as errors like this with -fvisibility=hidden:
symbol '__ZNSbIcED1Ev' can not be undefined in a subtraction expression
This fixes PR7353.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105954 91177308-0d34-0410-b5e6-96231b3b80d8
clean-up to a catch-all after inlining, take into account that there could be
filter IDs as well. The presence of filters don't mean that the selector catches
anything. It's just metadata information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105872 91177308-0d34-0410-b5e6-96231b3b80d8
i64 and f64 types, but now it also handle Neon vector types, so the f64 result
of VMOVDRR may need to be converted to a Neon type. Radar 8084742.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105845 91177308-0d34-0410-b5e6-96231b3b80d8
the machine instruction representation of the immediate value to be encoded
into an integer with similar fields as the actual VMOV instruction. This makes
things easier for the disassembler, since it can just stuff the bits into the
immediate operand, but harder for the asm printer since it has to decode the
value to be printed. Testcase for the encoding will follow later when MC has
more support for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105836 91177308-0d34-0410-b5e6-96231b3b80d8