This patch depends on the prior fix r129908 that changes to use std::find,
rather than std::binary_search, on unordered array.
Patch by Dan Bailey
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129909 91177308-0d34-0410-b5e6-96231b3b80d8
necessary since gcov counts transitions between blocks. It can't see if you've
run every line in a straight-line function, so we add an edge for it to notice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129905 91177308-0d34-0410-b5e6-96231b3b80d8
instrument the program to emit .gcda.
TODO: we should emit slightly different .gcda files when .gcno emission is off.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129903 91177308-0d34-0410-b5e6-96231b3b80d8
TII::isTriviallyReMaterializable() shouldn't depend on any properties of the
register being defined by the instruction. Rematerialization is going to create
a new virtual register anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129882 91177308-0d34-0410-b5e6-96231b3b80d8
generated by llvm-gcc, since llvm-gcc uses 2 i64s for passing a 4 x float
vector on ARM rather than an i64 array like Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129878 91177308-0d34-0410-b5e6-96231b3b80d8
On the x86-64 and thumb2 targets, some registers are more expensive to encode
than others in the same register class.
Add a CostPerUse field to the TableGen register description, and make it
available from TRI->getCostPerUse. This represents the cost of a REX prefix or a
32-bit instruction encoding required by choosing a high register.
Teach the greedy register allocator to prefer cheap registers for busy live
ranges (as indicated by spill weight).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129864 91177308-0d34-0410-b5e6-96231b3b80d8
used by Clang. To help Clang integration, the PTX target has been split
into two targets: ptx32 and ptx64, depending on the desired pointer size.
- Add GCCBuiltin class to all intrinsics
- Split PTX target into ptx32 and ptx64
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129851 91177308-0d34-0410-b5e6-96231b3b80d8
llvm is built with unsigned chars where an immediate such as 0xff would be zero
extended to 64-bits, turning "cmp $0xff,%eax" into
"cmp $0xffffffffffffffff,%eax".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129845 91177308-0d34-0410-b5e6-96231b3b80d8
manually and pass all (now) 4 arguments to the mul libcall. Add a new
ExpandLibCall for just this (copied gratuitously from type legalization).
Fixes rdar://9292577
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129842 91177308-0d34-0410-b5e6-96231b3b80d8
MCInst operands for ARM. This allows it to be
more tolerant of malformed MCInsts or incorrect
instruction metadata.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129840 91177308-0d34-0410-b5e6-96231b3b80d8
- There is a minor semantic change here (evidenced by the test change) for
Darwin triples that have no version component. I debated changing the default
behavior of isOSVersionLT, but decided it made more sense for triples to be
explicit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129802 91177308-0d34-0410-b5e6-96231b3b80d8
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Enable these fp vmlx codegen changes for Cortex-A9.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129775 91177308-0d34-0410-b5e6-96231b3b80d8