reachablity.
We conservatively approximate the reachability analysis by saying it is not
reachable if there is a single path starting from "From" and the path does not
reach "To".
rdar://12801584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171512 91177308-0d34-0410-b5e6-96231b3b80d8
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171373 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171359 91177308-0d34-0410-b5e6-96231b3b80d8
The new code is an improved copy of the code I deleted from Analysis/Loads.cpp.
One less compute-constant-gep-offset implementation. yay :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171326 91177308-0d34-0410-b5e6-96231b3b80d8
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171259 91177308-0d34-0410-b5e6-96231b3b80d8
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
propagating one of the values it simplified to a constant across
a myriad of instructions. Notably, ptrtoint instructions when we had
a constant pointer (say, 0) didn't propagate that, blocking a massive
number of down-stream optimizations.
This was uncovered when investigating why we fail to inline and delete
the boilerplate in:
void f() {
std::vector<int> v;
v.push_back(1);
}
It turns out most of the efforts I've made thus far to improve the
analysis weren't making it far purely because of this. After this is
fixed, the store-to-load forwarding patch enables LLVM to optimize the
above to an empty function. We still can't nuke a second push_back, but
for different reasons.
There is a very real chance this will cause somewhat noticable changes
in inlining behavior, so please let me know if you see regressions (or
improvements!) because of this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171196 91177308-0d34-0410-b5e6-96231b3b80d8
how to propagate constants through insert and extract value
instructions.
With the recent improvements to instsimplify, this allows inline cost
analysis to constant fold through intrinsic functions, including notably
the with.overflow intrinsic math routines which often show up inside of
STL abstractions. This is yet another piece in the puzzle of breaking
down the code for:
void f() {
std::vector<int> v;
v.push_back(1);
}
But it still isn't enough. There are a pile of bugs in inline cost still
blocking this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171195 91177308-0d34-0410-b5e6-96231b3b80d8
constant folding calls. Add the initial tests for this which show that
now instsimplify can simplify blindingly obvious code patterns expressed
with both intrinsics and library calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171194 91177308-0d34-0410-b5e6-96231b3b80d8
are nice and decomposed so that we can simplify synthesized calls as
easily as actually call instructions. The internal utility still has the
same behavior, it just now operates on a more generic interface so that
I can extend the set of call simplifications that instsimplify knows
about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171189 91177308-0d34-0410-b5e6-96231b3b80d8
When the backend is used from clang, it should produce proper diagnostics
instead of just printing messages to errs(). Other clients may also want to
register their own error handlers with the LLVMContext, and the same handler
should work for warnings in the same way as the existing emitError methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171041 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170704 91177308-0d34-0410-b5e6-96231b3b80d8
I introduced it in r166785. PR14291.
If TD is unavailable use getScalarSizeInBits, but don't optimize
pointers or vectors of pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170586 91177308-0d34-0410-b5e6-96231b3b80d8
In a previous thread it was pointed out that isPowerOfTwo is not a very precise
name since it can return false for powers of two if it is unable to show that
they are powers of two.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170093 91177308-0d34-0410-b5e6-96231b3b80d8
been used in the first place. It simply was passed to the function and to the
recursive invocations. Simply drop the parameter and update the callers for the
new signature.
Patch by Saleem Abdulrasool!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169988 91177308-0d34-0410-b5e6-96231b3b80d8
fsub X, +0 ==> X
fsub X, -0 ==> X, when we know X is not -0
fsub +/-0.0, (fsub -0.0, X) ==> X
fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
fsub nnan ninf X, X ==> 0.0
fadd nsz X, 0 ==> X
fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
where nnan and ninf have to occur at least once somewhere in this expression
fmul X, 1.0 ==> X
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169940 91177308-0d34-0410-b5e6-96231b3b80d8
instead of the instruction. I've left a forwarding wrapper for the
instruction so users with the instruction don't need to create
a GEPOperator themselves.
This lets us remove the copy of this code in instsimplify.
I've looked at most of the other copies of similar code, and this is the
only one I've found that is actually exactly the same. The one in
InlineCost is very close, but it requires re-mapping non-constant
indices through the cost analysis value simplification map. I could add
direct support for this to the generic routine, but it seems overly
specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169853 91177308-0d34-0410-b5e6-96231b3b80d8
the GEP instruction class.
This is part of the continued refactoring and cleaning of the
infrastructure used by SROA. This particular operation is also done in
a few other places which I'll try to refactor to share this
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169852 91177308-0d34-0410-b5e6-96231b3b80d8
Analyse Phis under the starting assumption that they are NoAlias. Recursively
look at their inputs.
If they MayAlias/MustAlias there must be an input that makes them so.
Addresses bug 14351.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169788 91177308-0d34-0410-b5e6-96231b3b80d8
This visitor provides infrastructure for recursively traversing the
use-graph of a pointer-producing instruction like an alloca or a malloc.
It maintains a worklist of uses to visit, so it can handle very deep
recursions. It automatically looks through instructions which simply
translate one pointer to another (bitcasts and GEPs). It tracks the
offset relative to the original pointer as long as that offset remains
constant and exposes it during the visit as an APInt offset. Finally, it
performs conservative escape analysis.
However, currently it has some limitations that should be addressed
going forward:
1) It doesn't handle vectors of pointers.
2) It doesn't provide a cheaper visitor when the constant offset
tracking isn't needed.
3) It doesn't support non-instruction pointer values.
The current functionality is exactly what is required to implement the
SROA pointer-use visitors in terms of this one, rather than in terms of
their own ad-hoc base visitor, which was always very poorly specified.
SROA has been converted to use this, and the code there deleted which
this utility now provides.
Technically speaking, using this new visitor allows SROA to handle a few
more cases than it previously did. It is now more aggressive in ignoring
chains of instructions which look like they would defeat SROA, but in
fact do not because they never result in a read or write of memory.
While this is "neat", it shouldn't be interesting for real programs as
any such chains should have been removed by others passes long before we
get to SROA. As a consequence, I've not added any tests for these
features -- it shouldn't be part of SROA's contract to perform such
heroics.
The goal is to extend the functionality of this visitor going forward,
and re-use it from passes like ASan that can benefit from doing
a detailed walk of the uses of a pointer.
Thanks to Ben Kramer for the code review rounds and lots of help
reviewing and debugging this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169728 91177308-0d34-0410-b5e6-96231b3b80d8
by virtue of inbounds GEPs that preclude a null pointer.
This is a very common pattern in the code generated by std::vector and
other standard library routines which use allocators that test for null
pervasively. This is one step closer to teaching Clang+LLVM to be able
to produce an empty function for:
void f() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
}
Which is related to getting them to completely fold SmallVector
push_back sequences into constants when inlining and other optimizations
make that a possibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169573 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168972 91177308-0d34-0410-b5e6-96231b3b80d8
more information for dependences between
instructions that don't share a common loop.
Updated the test results appropriately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168965 91177308-0d34-0410-b5e6-96231b3b80d8
there's no possible loo-independent dependence, then there's no
dependence.
Updated all test result appropriately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168719 91177308-0d34-0410-b5e6-96231b3b80d8
If the Src and Dst are the same instruction,
no loop-independent dependence is possible,
so we force the PossiblyLoopIndependent flag to false.
The test case results are updated appropriately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168678 91177308-0d34-0410-b5e6-96231b3b80d8
Added in first optimization using fast-math flags to serve as an example for following optimizations. SimplifyInstruction will now try to optimize an fmul observing its FastMathFlags to see if it can fold multiply by zero when 'nnan' and 'nsz' flags are set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168648 91177308-0d34-0410-b5e6-96231b3b80d8
analysis. Better is to look for cases with useful GEPs and use them
when possible. When a pair of useful GEPs is not available, use the
raw SCEVs directly. This approach supports better analysis of pointer
dereferencing.
In parallel, all the test cases are updated appropriately.
Cases where we have a store to *B++ can now be analyzed!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168474 91177308-0d34-0410-b5e6-96231b3b80d8
so that I can (someday) call SE->getSCEV without complaint.
No semantic change intended.
Patch from Preston Briggs <preston.briggs@gmail.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168391 91177308-0d34-0410-b5e6-96231b3b80d8