I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205076 91177308-0d34-0410-b5e6-96231b3b80d8
...instead of a separate Requires for each one. This style was already
used in some places and seems more compact.
No behavioral change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204452 91177308-0d34-0410-b5e6-96231b3b80d8
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204294 91177308-0d34-0410-b5e6-96231b3b80d8
The target was marking SIGN_EXTEND as Custom because it wanted to optimize
certain sign-extended shifts. In all other respects the extension is Legal,
so it'd be better to do the optimization in PerformDAGCombine instead.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203234 91177308-0d34-0410-b5e6-96231b3b80d8
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
Just the simple cases for now. There were a few knock-on changes of
MachineBasicBlock *s to MachineBasicBlock &s. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203105 91177308-0d34-0410-b5e6-96231b3b80d8
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
...into (ashr (shl (anyext X), ...), ...), which requires one fewer
instruction. The (anyext X) can sometimes be simplified too.
I didn't do this in DAGCombiner because widening shifts isn't a win
on all targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199114 91177308-0d34-0410-b5e6-96231b3b80d8
The zext handling added in r197802 wasn't right for RNSBG. This patch
restricts it to ROSBG, RXSBG and RISBG. (The tests for RISBG were added
in r197802 since RISBG was the motivating example.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198862 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198438 91177308-0d34-0410-b5e6-96231b3b80d8
...namely LOAD AND ADD, LOAD AND AND, LOAD AND OR and LOAD AND EXCLUSIVE OR.
LOAD AND ADD LOGICAL isn't really separately useful for LLVM.
I'll look at adding reusing the CC results in new year.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197985 91177308-0d34-0410-b5e6-96231b3b80d8
If the extension of a loaded value is compared against zero and used in
other arithmetic, InstCombine will change the comparison to use the
unextended load. It's also possible that the comparison could be against
the unextended load from the outset.
In DAG form this becomes a truncation of an extending load. We want to
strip the truncation if possible so that we can use load-and-test instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197804 91177308-0d34-0410-b5e6-96231b3b80d8
The handling of ANY_EXTEND and ZERO_EXTEND was too strict. In this context
we can treat ZERO_EXTEND in much the same way as an AND and then also handle
outermost ZERO_EXTENDs.
I couldn't find a test that benefited from the ANY_EXTEND change, but it's
more obvious to write it this way once SIGN_EXTEND and ZERO_EXTEND are
handled differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197802 91177308-0d34-0410-b5e6-96231b3b80d8
This originally came about after noticing that InstCombine turns
some of the TMHH (icmp (and...), ...) tests into plain comparisons.
Since there is no instruction to compare with a 64-bit immediate,
TMHH is generally better than an ordered comparison for the cases
that it can handle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197238 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes more use of LPGFR and LNGFR. It builds on top of
the LTGFR selection from r197234. Most of the tests are motivated
by what InstCombine would produce.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197236 91177308-0d34-0410-b5e6-96231b3b80d8
...in an attempt to rein back the increasingly complex selection code.
A knock-on effect is that ICmpType is exposed from the outset, which
slightly simplifies adjustSubwordCmp.
The code is no piece of art even after this change, but at least it should
be slightly better. No behavioral change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197235 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine turns (sext (trunc)) into (ashr (shl)), then converts any
comparison of the ashr against zero into a comparison of the shl against zero.
This makes sense in itself, but we want to undo it for z, since the sign-
extension instruction has a CC-setting form.
I've included tests for both the original and InstCombined variants,
but the former already worked. The patch fixes the latter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197234 91177308-0d34-0410-b5e6-96231b3b80d8
In such cases it's often better to test the result of the negation instead,
since the negation also sets CC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197032 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196906 91177308-0d34-0410-b5e6-96231b3b80d8
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196905 91177308-0d34-0410-b5e6-96231b3b80d8
Since z has no setcc instruction as such, the choice of setBooleanContents
is a bit arbitrary. Currently it's set to ZeroOrOneBooleanContent,
so we produced a branch-free form when selecting between 0 and 1,
but not when selecting between 0 and -1. This patch handles the latter
case too.
At some point I'd like to measure whether it's better to use conditional
moves for constant selects on z196, but that's future work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196578 91177308-0d34-0410-b5e6-96231b3b80d8
The backend converts 64-bit ORs into subreg moves if the upper 32 bits
of one operand and the low 32 bits of the other are known to be zero.
It then tries to peel away redundant ANDs from the upper 32 bits.
Since AND masks are canonicalized to exclude known-zero bits,
the test ORs the mask and the known-zero bits together before
checking for redundancy. The problem was that it was using the
wrong node when checking for known-zero bits, so could drop ANDs
that were still needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196267 91177308-0d34-0410-b5e6-96231b3b80d8