2413 Commits

Author SHA1 Message Date
Diego Novillo
0a0d620db3 Fix bug 19437 - Only add discriminators for DWARF 4 and above.
Summary:
This prevents the discriminator generation pass from triggering if
the DWARF version being used in the module is prior to 4.

Reviewers: echristo, dblaikie

CC: llvm-commits

Differential Revision: http://reviews.llvm.org/D3413

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206507 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-17 22:33:50 +00:00
Nuno Lopes
07f099b867 remove some dead code
lib/Analysis/IPA/InlineCost.cpp         |   18 ------------------
 lib/Analysis/RegionPass.cpp             |    1 -
 lib/Analysis/TypeBasedAliasAnalysis.cpp |    1 -
 lib/Transforms/Scalar/LoopUnswitch.cpp  |   21 ---------------------
 lib/Transforms/Utils/LCSSA.cpp          |    2 --
 lib/Transforms/Utils/LoopSimplify.cpp   |    6 ------
 utils/TableGen/AsmWriterEmitter.cpp     |   13 -------------
 utils/TableGen/DFAPacketizerEmitter.cpp |    7 -------
 utils/TableGen/IntrinsicEmitter.cpp     |    2 --
 9 files changed, 71 deletions(-)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206506 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-17 22:26:44 +00:00
Julien Lerouge
894b7f642c Add lifetime markers for allocas created to hold byval arguments, make them
appear in the InlineFunctionInfo.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206308 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-15 18:06:46 +00:00
Julien Lerouge
031f5c1a82 Split byval argument initialization so the memcpy(s) are injected at the
beginning of the first new block after inlining.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206307 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-15 18:01:54 +00:00
David Blaikie
77cf856e56 Implement depth_first and inverse_depth_first range factory functions.
Also updated as many loops as I could find using df_begin/idf_begin -
strangely I found no uses of idf_begin. Is that just used out of tree?

Also a few places couldn't use df_begin because either they used the
member functions of the depth first iterators or had specific ordering
constraints (I added a comment in the latter case).

Based on a patch by Jim Grosbach. (Jim - you just had iterator_range<T>
where you needed iterator_range<idf_iterator<T>>)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206016 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-11 01:50:01 +00:00
Adrian Prantl
cf6f4c8c34 C++11: convert verbose loops to range-based loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204981 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 23:30:04 +00:00
Reid Kleckner
891835ae0f CloneFunction: Clone all attributes, including the CC
Summary:
Tested with a unit test because we don't appear to have any transforms
that use this other than ASan, I think.

Fixes PR17935.

Reviewers: nicholas

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D3194

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204866 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 22:26:35 +00:00
Mark Seaborn
9bb9615e1f Remove LowerInvoke's obsolete "-enable-correct-eh-support" option
This option caused LowerInvoke to generate code using SJLJ-based
exception handling, but there is no code left that interprets the
jmp_buf stack that the resulting code maintained (llvm.sjljeh.jblist).
This option has been obsolete for a while, and replaced by
SjLjEHPrepare.

This leaves the default behaviour of LowerInvoke, which is to convert
invokes to calls.

Differential Revision: http://llvm-reviews.chandlerc.com/D3136

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204388 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-20 19:54:47 +00:00
Evgeniy Stepanov
eef411a52a Set debug info for instructions inserted in SplitBlockAndInsertIfThen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204230 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-19 12:56:38 +00:00
Alon Mishne
086494730d [C++11] Change DebugInfoFinder to use range-based loops
Also changes the iterators to return actual DI type over MDNode.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204130 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-18 09:41:07 +00:00
Hans Wennborg
09a31f3154 Allow switch-to-lookup table for tables with holes by adding bitmask check
This allows us to generate table lookups for code such as:

  unsigned test(unsigned x) {
    switch (x) {
      case 100: return 0;
      case 101: return 1;
      case 103: return 2;
      case 105: return 3;
      case 107: return 4;
      case 109: return 5;
      case 110: return 6;
      default: return f(x);
    }
  }

Since cases 102, 104, etc. are not constants, the lookup table has holes
in those positions. We therefore guard the table lookup with a bitmask check.

Patch by Jasper Neumann!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203694 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 18:35:40 +00:00
Evan Cheng
9225686155 Revert r203488 and r203520.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203687 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 18:09:37 +00:00
Alon Mishne
e74c0bf111 Cloning a function now also clones its debug metadata if 'ModuleLevelChanges' is true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203662 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 14:42:51 +00:00
Evan Cheng
fc77954998 Follow up to r203488. Code clean up to eliminate a lot of copy+paste.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203520 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-11 00:24:20 +00:00
Evan Cheng
d89b0f200c For functions with ARM target specific calling convention, when simplify-libcall
optimize a call to a llvm intrinsic to something that invovles a call to a C
library call, make sure it sets the right calling convention on the call.

e.g.
extern double pow(double, double);
double t(double x) {
  return pow(10, x);
}

Compiles to something like this for AAPCS-VFP:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
  %0 = call double @llvm.pow.f64(double 1.000000e+01, double %x)
  ret double %0
}

declare double @llvm.pow.f64(double, double) #1

Simplify libcall (part of instcombine) will turn the above into:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
  %__exp10 = call double @__exp10(double %x) #1
  ret double %__exp10
}

declare double @__exp10(double)

The pre-instcombine code works because calls to LLVM builtins are special.
Instruction selection will chose the right calling convention for the call.
However, the code after instcombine is wrong. The call to __exp10 will use
the C calling convention.

I can think of 3 options to fix this.

1. Make "C" calling convention just work since the target should know what CC
   is being used.

   This doesn't work because each function can use different CC with the "pcs"
   attribute.

2. Have Clang add the right CC keyword on the calls to LLVM builtin.

   This will work but it doesn't match the LLVM IR specification which states
   these are "Standard C Library Intrinsics".

3. Fix simplify libcall so the resulting calls to the C routines will have the
   proper CC keyword. e.g.
   %__exp10 = call arm_aapcs_vfpcc double @__exp10(double %x) #1

   This works and is the solution I implemented here.

Both solutions #2 and #3 would work. After carefully considering the pros and
cons, I decided to implement #3 for the following reasons.

1. It doesn't change the "spec" of the intrinsics.
2. It's a self-contained fix.

There are a couple of potential downsides.
1. There could be other places in the optimizer that is broken in the same way
   that's not addressed by this.
2. There could be other calling conventions that need to be propagated by
   simplify-libcall that's not handled.

But for now, this is the fix that I'm most comfortable with.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203488 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-10 20:49:45 +00:00
Benjamin Kramer
4b484628f4 SimplifyCFG: Simplify the weight scaling algorithm.
No change in functionality.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203413 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 14:42:55 +00:00
Chandler Carruth
36b699f2b1 [C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
   detail
2) Change it to actually be a *Use* iterator rather than a *User*
   iterator.
3) Add an adaptor which is a User iterator that always looks through the
   Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
   they wanted a use_iterator (and to explicitly dig out the User when
   needed), or a user_iterator which makes the Use itself totally
   opaque.

Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.

The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.

However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00
Ahmed Charles
f4ccd11075 Replace OwningPtr<T> with std::unique_ptr<T>.
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-06 05:51:42 +00:00
Chandler Carruth
f4ec8bfaec [Layering] Move DebugInfo.h into the IR library where its implementation
already lives.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203046 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-06 00:46:21 +00:00
Chandler Carruth
7cf9764966 [Layering] Move DIBuilder.h into the IR library where its implementation
already lives.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203038 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-06 00:22:06 +00:00
Ahmed Charles
1a6eca243f [C++11] Replace OwningPtr::take() with OwningPtr::release().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202957 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-05 10:19:29 +00:00
Craig Topper
7b62be28cb [C++11] Add 'override' keyword to virtual methods that override their base class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202953 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-05 09:10:37 +00:00
Chandler Carruth
19d764fb05 [Modules] Move the ConstantRange class into the IR library. This is
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202838 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 12:24:34 +00:00
Chandler Carruth
5b74a01aad [Modules] Move the PredIteratorCache into the IR library -- it is
hardcoded to use IR BasicBlocks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202835 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 12:09:19 +00:00
Chandler Carruth
ff956e7568 [Modules] Move the NoFolder into the IR library as it creates
instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202834 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 12:05:47 +00:00
Chandler Carruth
03e36d752c [Modules] Move CFG.h to the IR library as it defines graph traits over
IR types.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202827 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:45:46 +00:00
Chandler Carruth
eb3d76da81 [Modules] Move ValueHandle into the IR library where Value itself lives.
Move the test for this class into the IR unittests as well.

This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202821 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:17:44 +00:00
Chandler Carruth
df3d8e8b4d [Modules] Move the LLVM IR pattern match header into the IR library, it
obviously is coupled to the IR.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202818 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:08:18 +00:00
Chandler Carruth
4bbfbdf7d7 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202816 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:01:28 +00:00
Chandler Carruth
bd7cba0d81 [Modules] Move GetElementPtrTypeIterator into the IR library. As its
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.

Another step of modularizing the support library.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 10:40:04 +00:00
Chandler Carruth
1decd56b8d [cleanup] Re-sort all the includes with utils/sort_includes.py.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202811 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 10:07:28 +00:00
Diego Novillo
f05b45fdb2 Pass to emit DWARF path discriminators.
DWARF discriminators are used to distinguish multiple control flow paths
on the same source location. When this happens, instructions across
basic block boundaries will share the same debug location.

This pass detects this situation and creates a new lexical scope to one
of the two instructions. This lexical scope is a child scope of the
original and contains a new discriminator value. This discriminator is
then picked up from MCObjectStreamer::EmitDwarfLocDirective to be
written on the object file.

This fixes http://llvm.org/bugs/show_bug.cgi?id=18270.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202752 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-03 20:06:11 +00:00
Benjamin Kramer
d628f19f5d [C++11] Replace llvm::next and llvm::prior with std::next and std::prev.
Remove the old functions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202636 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-02 12:27:27 +00:00
Rafael Espindola
57edc9d4ff Make DataLayout a plain object, not a pass.
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-25 17:30:31 +00:00
Rafael Espindola
eb6e1d3165 Rename a few more DataLayout variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201833 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-21 01:53:35 +00:00
Rafael Espindola
f116e5308d Rename many DataLayout variables from TD to DL.
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201827 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-21 00:06:31 +00:00
Rafael Espindola
39d8dcb53b Rename some member variables from TD to DL.
TargetData was renamed DataLayout back in r165242.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201581 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-18 15:33:12 +00:00
Chandler Carruth
d5a9ea8afe [LPM] A terribly simple fix to a terribly complex bug: PR18773.
The crux of the issue is that LCSSA doesn't preserve stateful alias
analyses. Before r200067, LICM didn't cause LCSSA to run in the LTO pass
manager, where LICM runs essentially without any of the other loop
passes. As a consequence the globalmodref-aa pass run before that loop
pass manager was able to survive the loop pass manager and be used by
DSE to eliminate stores in the function called from the loop body in
Adobe-C++/loop_unroll (and similar patterns in other benchmarks).

When LICM was taught to preserve LCSSA it had to require it as well.
This caused it to be run in the loop pass manager and because it did not
preserve AA, the stateful AA was lost. Most of LLVM's AA isn't stateful
and so this didn't manifest in most cases. Also, in most cases LCSSA was
already running, and so there was no interesting change.

The real kicker is that LCSSA by its definition (injecting PHI nodes
only) trivially preserves AA! All we need to do is mark it, and then
everything goes back to working as intended. It probably was blocking
some other weird cases of stateful AA but the only one I have is
a 1000-line IR test case from loop_unroll, so I don't really have a good
test case here.

Hopefully this fixes the regressions on performance that have been seen
since that revision.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201104 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-10 19:39:35 +00:00
Benjamin Kramer
fb0ad6bd15 SimplifyLibCalls: Push TLI through the exp2->ldexp transform.
For the odd case of platforms with exp2 available but not ldexp.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200795 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-04 20:27:23 +00:00
Tim Northover
8f0354c973 OS X: the correct function is __sincospif_stret, not __sincospi_stretf
rdar://problem/13729466

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200771 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-04 16:28:20 +00:00
Kai Nacke
6840e895c1 Add strchr(p, 0) -> p + strlen(p) to SimplifyLibCalls
Add the missing transformation strchr(p, 0) -> p + strlen(p) to SimplifyLibCalls
and remove the ToDo comment.

Reviewer: Duncan P.N. Exan Smith


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200736 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-04 05:55:16 +00:00
Duncan P. N. Exon Smith
e6562c5088 Lower llvm.expect intrinsic correctly for i1
LowerExpectIntrinsic previously only understood the idiom of an expect
intrinsic followed by a comparison with zero. For llvm.expect.i1, the
comparison would be stripped by the early-cse pass.

Patch by Daniel Micay.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200664 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-02 22:43:55 +00:00
Eli Bendersky
a7bc25e34c Remove some unused #includes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200611 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-01 13:12:54 +00:00
Chandler Carruth
a403ceb205 [LPM] Fix PR18643, another scary place where loop transforms failed to
preserve loop simplify of enclosing loops.

The problem here starts with LoopRotation which ends up cloning code out
of the latch into the new preheader it is buidling. This can create
a new edge from the preheader into the exit block of the loop which
breaks LoopSimplify form. The code tries to fix this by splitting the
critical edge between the latch and the exit block to get a new exit
block that only the latch dominates. This sadly isn't sufficient.

The exit block may be an exit block for multiple nested loops. When we
clone an edge from the latch of the inner loop to the new preheader
being built in the outer loop, we create an exiting edge from the outer
loop to this exit block. Despite breaking the LoopSimplify form for the
inner loop, this is fine for the outer loop. However, when we split the
edge from the inner loop to the exit block, we create a new block which
is in neither the inner nor outer loop as the new exit block. This is
a predecessor to the old exit block, and so the split itself takes the
outer loop out of LoopSimplify form. We need to split every edge
entering the exit block from inside a loop nested more deeply than the
exit block in order to preserve all of the loop simplify constraints.

Once we try to do that, a problem with splitting critical edges
surfaces. Previously, we tried a very brute force to update LoopSimplify
form by re-computing it for all exit blocks. We don't need to do this,
and doing this much will sometimes but not always overlap with the
LoopRotate bug fix. Instead, the code needs to specifically handle the
cases which can start to violate LoopSimplify -- they aren't that
common. We need to see if the destination of the split edge was a loop
exit block in simplified form for the loop of the source of the edge.
For this to be true, all the predecessors need to be in the exact same
loop as the source of the edge being split. If the dest block was
originally in this form, we have to split all of the deges back into
this loop to recover it. The old mechanism of doing this was
conservatively correct because at least *one* of the exiting blocks it
rewrote was the DestBB and so the DestBB's predecessors were fixed. But
this is a much more targeted way of doing it. Making it targeted is
important, because ballooning the set of edges touched prevents
LoopRotate from being able to split edges *it* needs to split to
preserve loop simplify in a coherent way -- the critical edge splitting
would sometimes find the other edges in need of splitting but not
others.

Many, *many* thanks for help from Nick reducing these test cases
mightily. And helping lots with the analysis here as this one was quite
tricky to track down.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200393 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-29 13:16:53 +00:00
Rafael Espindola
f611ae40fd Fix pr14893.
When simplifycfg moves an instruction, it must drop metadata it doesn't know
is still valid with the preconditions changes. In particular, it must drop
the range and tbaa metadata.

The patch implements this with an utility function to drop all metadata not
in a white list.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200322 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-28 16:56:46 +00:00
Chandler Carruth
5ea4a54551 [LPM] Fix PR18616 where the shifts to the loop pass manager to extract
LCSSA from it caused a crasher with the LoopUnroll pass.

This crasher is really nasty. We destroy LCSSA form in a suprising way.
When unrolling a loop into an outer loop, we not only need to restore
LCSSA form for the outer loop, but for all children of the outer loop.
This is somewhat obvious in retrospect, but hey!

While this seems pretty heavy-handed, it's not that bad. Fundamentally,
we only do this when we unroll a loop, which is already a heavyweight
operation. We're unrolling all of these hypothetical inner loops as
well, so their size and complexity is already on the critical path. This
is just adding another pass over them to re-canonicalize.

I have a test case from PR18616 that is great for reproducing this, but
pretty useless to check in as it relies on many 10s of nested empty
loops that get unrolled and deleted in just the right order. =/ What's
worse is that investigating this has exposed another source of failure
that is likely to be even harder to test. I'll try to come up with test
cases for these fixes, but I want to get the fixes into the tree first
as they're causing crashes in the wild.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200273 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-28 01:25:38 +00:00
Manman Ren
aa6627016f PGO branch weight: keep halving the weights until they can fit into
uint32.

When folding branches to common destination, the updated branch weights
can exceed uint32 by more than factor of 2. We should keep halving the
weights until they can fit into uint32.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200262 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-27 23:39:03 +00:00
Chandler Carruth
3d69cf57e1 [LPM] Make LCSSA a utility with a FunctionPass that applies it to all
the loops in a function, and teach LICM to work in the presance of
LCSSA.

Previously, LCSSA was a loop pass. That made passes requiring it also be
loop passes and unable to depend on function analysis passes easily. It
also caused outer loops to have a different "canonical" form from inner
loops during analysis. Instead, we go into LCSSA form and preserve it
through the loop pass manager run.

Note that this has the same problem as LoopSimplify that prevents
enabling its verification -- loop passes which run at the end of the loop
pass manager and don't preserve these are valid, but the subsequent loop
pass runs of outer loops that do preserve this pass trigger too much
verification and fail because the inner loop no longer verifies.

The other problem this exposed is that LICM was completely unable to
handle LCSSA form. It didn't preserve it and it actually would give up
on moving instructions in many cases when they were used by an LCSSA phi
node. I've taught LICM to support detecting LCSSA-form PHI nodes and to
hoist and sink around them. This may actually let LICM fire
significantly more because we put everything into LCSSA form to rotate
the loop before running LICM. =/ Now LICM should handle that fine and
preserve it correctly. The down side is that LICM has to require LCSSA
in order to preserve it. This is just a fact of life for LCSSA. It's
entirely possible we should completely remove LCSSA from the optimizer.

The test updates are essentially accomodating LCSSA phi nodes in the
output of LICM, and the fact that we now completely sink every
instruction in ashr-crash below the loop bodies prior to unrolling.

With this change, LCSSA is computed only three times in the pass
pipeline. One of them could be removed (and potentially a SCEV run and
a separate LoopPassManager entirely!) if we had a LoopPass variant of
InstCombine that ran InstCombine on the loop body but refused to combine
away LCSSA PHI nodes. Currently, this also prevents loop unrolling from
being in the same loop pass manager is rotate, LICM, and unswitch.

There is one thing that I *really* don't like -- preserving LCSSA in
LICM is quite expensive. We end up having to re-run LCSSA twice for some
loops after LICM runs because LICM can undo LCSSA both in the current
loop and the parent loop. I don't really see good solutions to this
other than to completely move away from LCSSA and using tools like
SSAUpdater instead.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200067 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-25 04:07:24 +00:00
Alp Toker
ae43cab6ba Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-24 17:20:08 +00:00
Chandler Carruth
aaf44af769 [LPM] Make LoopSimplify no longer a LoopPass and instead both a utility
function and a FunctionPass.

This has many benefits. The motivating use case was to be able to
compute function analysis passes *after* running LoopSimplify (to avoid
invalidating them) and then to run other passes which require
LoopSimplify. Specifically passes like unrolling and vectorization are
critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so
that they can be profile aware. For the LoopVectorize pass the only
things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify
and LCSSA is next on my list.

There are also a bunch of other benefits of doing this:
- It is now very feasible to make more passes *preserve* LoopSimplify
  because they can simply run it after changing a loop. Because
  subsequence passes can assume LoopSimplify is preserved we can reduce
  the runs of this pass to the times when we actually mutate a loop
  structure.
- The new pass manager should be able to more easily support loop passes
  factored in this way.
- We can at long, long last observe that LoopSimplify is preserved
  across SCEV. This *halves* the number of times we run LoopSimplify!!!

Now, getting here wasn't trivial. First off, the interfaces used by
LoopSimplify are all over the map regarding how analysis are updated. We
end up with weird "pass" parameters as a consequence. I'll try to clean
at least some of this up later -- I'll have to have it all clean for the
new pass manager.

Next up I discovered a really frustrating bug. LoopUnroll *claims* to
preserve LoopSimplify. That's actually a lie. But the way the
LoopPassManager ends up running the passes, it always ran LoopSimplify
on the unrolled-into loop, rectifying this oversight before any
verification could kick in and point out that in fact nothing was
preserved. So I've added code to the unroller to *actually* simplify the
surrounding loop when it succeeds at unrolling.

The only functional change in the test suite is that we now catch a case
that was previously missed because SCEV and other loop transforms see
their containing loops as simplified and thus don't miss some
opportunities. One test case has been converted to check that we catch
this case rather than checking that we miss it but at least don't get
the wrong answer.

Note that I have #if-ed out all of the verification logic in
LoopSimplify! This is a temporary workaround while extracting these bits
from the LoopPassManager. Currently, there is no way to have a pass in
the LoopPassManager which preserves LoopSimplify along with one which
does not. The LPM will try to verify on each loop in the nest that
LoopSimplify holds but the now-Function-pass cannot distinguish what
loop is being verified and so must try to verify all of them. The inner
most loop is clearly no longer simplified as there is a pass which
didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe
LoopVectorize and some other fixes) I'll be able to re-enable this check
and catch any places where we are still failing to preserve
LoopSimplify. If this causes problems I can back this out and try to
commit *all* of this at once, but so far this seems to work and allow
much more incremental progress.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-23 11:23:19 +00:00