half a million non-local queries, each of which would otherwise have triggered a
linear scan over a basic block.
Also fix a fixme for memory intrinsics which dereference pointers. With this,
we prove that a pointer is non-null because it was dereferenced by an intrinsic
112 times in llvm-test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123533 91177308-0d34-0410-b5e6-96231b3b80d8
simplification present in fully optimized code (I think instcombine fails to
transform some of these when "X-Y" has more than one use). Fires here and
there all over the test-suite, for example it eliminates 8 subtractions in
the final IR for 445.gobmk, 2 subs in 447.dealII, 2 in paq8p etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123442 91177308-0d34-0410-b5e6-96231b3b80d8
threading of shifts over selects and phis while there. This fires here and
there in the testsuite, to not much effect. For example when compiling spirit
it fires 5 times, during early-cse, resulting in 6 more cse simplifications,
and 3 more terminators being folded by jump threading, but the final bitcode
doesn't change in any interesting way: other optimizations would have caught
the opportunity anyway, only later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123441 91177308-0d34-0410-b5e6-96231b3b80d8
While there, I noticed that the transform "undef >>a X -> undef" was wrong.
For example if X is 2 then the top two bits must be equal, so the result can
not be anything. I fixed this in the constant folder as well. Also, I made
the transform for "X << undef" stronger: it now folds to undef always, even
though X might be zero. This is in accordance with the LangRef, but I must
admit that it is fairly aggressive. Also, I added "i32 X << 32 -> undef"
following the LangRef and the constant folder, likewise fairly aggressive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123417 91177308-0d34-0410-b5e6-96231b3b80d8
Add methods for accessing the (single) entry / exit edge of a region. If no such
edge exists, null is returned. Both accessors return the start block of the
corresponding edge. The edge can finally be formed by utilizing
Region::getEntry() or Region::getExit();
Contributed by: Andreas Simbuerger <simbuerg@fim.uni-passau.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123410 91177308-0d34-0410-b5e6-96231b3b80d8
is "X != 0 -> X" when X is a boolean. This occurs a lot because of the way
llvm-gcc converts gcc's conditional expressions. Add this, and a few other
similar transforms for completeness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123372 91177308-0d34-0410-b5e6-96231b3b80d8
point values to their integer representation through the SSE intrinsic
calls. This is the last part of a README.txt entry for which I have real
world examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123206 91177308-0d34-0410-b5e6-96231b3b80d8
a + {b,+,stride} into {a+b,+,stride} (because a is LIV),
then the resultant AddRec is NUW/NSW if the client says it
is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123133 91177308-0d34-0410-b5e6-96231b3b80d8
void f(int* begin, int* end) { std::fill(begin, end, 0); }
which turns into a != exit expression where one pointer is
strided and (thanks to step #1) known to not overflow, and
the other is loop invariant.
The observation here is that, though the IV is strided by
4 in this case, that the IV *has* to become equal to the
end value. It cannot "miss" the end value by stepping over
it, because if it did, the strided IV expression would
eventually wrap around.
Handle this by turning A != B into "A-B != 0" where the A-B
part is known to be NUW.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123131 91177308-0d34-0410-b5e6-96231b3b80d8
ret i64 ptrtoint (i8* getelementptr ([1000 x i8]* @X, i64 1, i64 sub (i64 0, i64 ptrtoint ([1000 x i8]* @X to i64))) to i64)
to "ret i64 1000". This allows us to correctly compute the trip count
on a loop in PR8883, which occurs with std::fill on a char array. This
allows us to transform it into a memset with a constant size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122950 91177308-0d34-0410-b5e6-96231b3b80d8
hasBlockValue() that was causing iterator invalidations. Many thanks to Dimitry Andric for
tracking down those invalidations!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122906 91177308-0d34-0410-b5e6-96231b3b80d8
a pointer value has potentially become escaping. Implementations can choose to either fall back to
conservative responses for that value, or may recompute their analysis to accomodate the change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122777 91177308-0d34-0410-b5e6-96231b3b80d8
update a callGraph when performing the common operation of splicing the body to
a new function and updating all callers (such as via RAUW).
No users yet, though this is intended for DeadArgumentElimination as part of
PR8887.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122728 91177308-0d34-0410-b5e6-96231b3b80d8
numbering, in which it considers (for example) "%a = add i32 %x, %y" and
"%b = add i32 %x, %y" to be equal because the operands are equal and the
result of the instructions only depends on the values of the operands.
This has almost no effect (it removes 4 instructions from gcc-as-one-file),
and perhaps slows down compilation: I measured a 0.4% slowdown on the large
gcc-as-one-file testcase, but it wasn't statistically significant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122654 91177308-0d34-0410-b5e6-96231b3b80d8
the original instruction, half the cases were missed (making it not
wrong but suboptimal). Also correct a typo (A <-> B) in the second
chunk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122414 91177308-0d34-0410-b5e6-96231b3b80d8
not assume this (for example in case more transforms get added below
it). Suggested by Frits van Bommel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122332 91177308-0d34-0410-b5e6-96231b3b80d8
quite often, but don't make much difference in practice presumably because
instcombine also knows them and more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122328 91177308-0d34-0410-b5e6-96231b3b80d8
a couple of existing transforms. This fires surprisingly often, for
example when compiling gcc "(X+(-1))+1->X" fires quite a lot as well
as various "and" simplifications (usually with a phi node operand).
Most of the time this doesn't make a real difference since the same
thing would have been done elsewhere anyway, eg: by instcombine, but
there are a few places where this results in simplifications that we
were not doing before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122326 91177308-0d34-0410-b5e6-96231b3b80d8