SystemZRegisterInfo and replace it with the subtarget as that's
all they needed in the first place. Update all uses and calls
accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211877 91177308-0d34-0410-b5e6-96231b3b80d8
system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206838 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
We previously used the default expansion to SELECT_CC, which in turn would
expand to "LHI; BRC; LHI". In most cases it's better to use an IPM-based
sequence instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192784 91177308-0d34-0410-b5e6-96231b3b80d8
There are no corresponding patterns for small immediates because they would
prevent the use of fused compare-and-branch instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191775 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to low words, we can use the shorter LLIHL and LLIHH if it turns
out that the other half of the GR64 isn't live.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191750 91177308-0d34-0410-b5e6-96231b3b80d8
This just adds the basics necessary for allocating the upper words to
virtual registers (move, load and store). The move support is parameterised
in a way that makes it easy to handle zero extensions, but the associated
zero-extend patterns are added by a later patch.
The easiest way of testing this seemed to be add a new "h" register
constraint for high words. I don't expect the constraint to be useful
in real inline asms, but it should work, so I didn't try to hide it
behind an option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191739 91177308-0d34-0410-b5e6-96231b3b80d8
Use subreg_hNN and subreg_lNN for the high and low NN bits of a register.
List the low registers first, so that subreg_l32 also means the low 32
bits of a 128-bit register.
Floats are stored in the upper 32 bits of a 64-bit register, so they
should use subreg_h32 rather than subreg_l32.
No behavioral change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191659 91177308-0d34-0410-b5e6-96231b3b80d8
The backend tries to use block operations like MVC, NC, OC and XC for
simple scalar operations. For correctness reasons, it rejects any case
in which the regions might partially overlap. However, for performance
reasons, it should also reject cases where the regions might be equal,
since the instruction might then not use the fast path.
This fixes a performance regression seen in bzip2. We may want to limit
the optimisation even more in future, or even remove it entirely, but I'll
try with this for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191525 91177308-0d34-0410-b5e6-96231b3b80d8
Another patch to avoid duplication of encoding information. Things like
NILF, NILL and NILH are used as both 32-bit and 64-bit instructions.
Here the 64-bit versions are defined as aliases of the 32-bit ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191369 91177308-0d34-0410-b5e6-96231b3b80d8
Another patch to reduce the duplication of encoding information.
Rather than define separate patterns for truncating 64-bit stores,
use the 32-bit stores with a subreg. No behavioral changed intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191365 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason I never got around to adding these at the same time as
the signed versions. No idea why.
I'm not sure whether this SystemZII::BranchC* stuff is useful, or whether
it should just be replaced with an "is normal" flag. I'll leave that
for later though.
There are some boundary conditions that can be tweaked, such as preferring
unsigned comparisons for equality with [128, 256), and "<= 255" over "< 256",
but again I'll leave those for a separate patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190930 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize r188163 to cope with return types other than MVT::i32, just
as the existing visitMemCmpCall code did. I've split this out into a
subroutine so that it can be used for other upcoming patches.
I also noticed that I'd used the wrong API to record the out chain.
It's a load that uses DAG.getRoot() rather than getRoot(), so the out
chain should go on PendingLoads. I don't have a testcase for that because
we don't do any interesting scheduling on z yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188540 91177308-0d34-0410-b5e6-96231b3b80d8
r188163 used CLC to implement memcmp. Code that compares the result
directly against zero can test the CC value produced by CLC, but code
that needs an integer result must use IPM. The sequence I'd used was:
ipm <reg>
sll <reg>, 2
sra <reg>, 30
but I'd forgotten that this inverts the order, so that CC==1 ("less")
becomes an integer greater than zero, and CC==2 ("greater") becomes
an integer less than zero. This sequence should only be used if the
CLC arguments are reversed to compensate. The problem then is that
the branch condition must also be reversed when testing the CLC
result directly.
Rather than do that, I went for a different sequence that works with
the natural CLC order:
ipm <reg>
srl <reg>, 28
rll <reg>, <reg>, 31
One advantage of this is that it doesn't clobber CC. A disadvantage
is that any sign extension to 64 bits must be done separately,
rather than being folded into the shifts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188538 91177308-0d34-0410-b5e6-96231b3b80d8
For now this is restricted to fixed-length comparisons with a length
in the range [1, 256], as for memcpy() and MVC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188163 91177308-0d34-0410-b5e6-96231b3b80d8
This follows the same lines as the integer code. In the end it seemed
easier to have a second 4-bit mask in TSFlags to specify the compare-like
CC values. That eats one more TSFlags bit than adding a CCHasUnordered
would have done, but it feels more concise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187883 91177308-0d34-0410-b5e6-96231b3b80d8
This patch just uses a peephole test for "add; compare; branch" sequences
within a single block. The IR optimizers already convert loops to
decrement-and-branch-on-nonzero form in some cases, so even this
simplistic test triggers many times during a clang bootstrap and
projects/test-suite run. It looks like there are still cases where we
need to more strongly prefer branches on nonzero though. E.g. I saw a
case where a loop that started out with a check for 0 ended up with a
check for -1. I'll try to look at that sometime.
I ended up adding the Reference class because MachineInstr::readsRegister()
doesn't check for subregisters (by design, as far as I could tell).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187723 91177308-0d34-0410-b5e6-96231b3b80d8
This also fixes a bug in the predication of LR to LOCR: I'd forgotten
that with these in-place instruction builds, the implicit operands need
to be added manually. I think this was latent until now, but is tested
by int-cmp-45.c. It also adds a CC valid mask to STOC, again tested by
int-cmp-45.c.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187573 91177308-0d34-0410-b5e6-96231b3b80d8
System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken. We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities. For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2. If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3. Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.
Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll. Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.
The patch also makes it easier to reuse CC results from other instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187495 91177308-0d34-0410-b5e6-96231b3b80d8
r187116 moved compare-and-branch generation from the instruction-selection
pass to the peephole optimizer (via optimizeCompare). It turns out that even
this is a bit too early. Fused compare-and-branch instructions don't
interact well with predication, where a CC result is needed. They also
make it harder to reuse the CC side-effects of earlier instructions
(not yet implemented, but the subject of a later patch).
Another problem was that the AnalyzeBranch family of routines weren't
handling compares and branches, so we weren't able to reverse the fused
form in cases where we would reverse a separate branch. This could have
been fixed by extending AnalyzeBranch, but given the other problems,
I've instead moved the fusing to the long-branch pass, which is also
responsible for the opposite transformation: splitting out-of-range
compares and branches into separate compares and long branches.
I've added a test for the AnalyzeBranch problem. A test for the
predication problem is included in the next patch, which fixes a bug
in the choice of CC mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187494 91177308-0d34-0410-b5e6-96231b3b80d8
r186399 aggressively used the RISBG instruction for immediate ANDs,
both because it can handle some values that AND IMMEDIATE can't,
and because it allows the destination register to be different from
the source. I realized later while implementing the distinct-ops
support that it would be better to leave the choice up to
convertToThreeAddress() instead. The AND IMMEDIATE form is shorter
and is less likely to be cracked.
This is a problem for 32-bit ANDs because we assume that all 32-bit
operations will leave the high word untouched, whereas RISBG used in
this way will either clear the high word or copy it from the source
register. The patch uses the z196 instruction RISBLG for this instead.
This means that z10 will be restricted to NILL, NILH and NILF for
32-bit ANDs, but I think that should be OK for now. Although we're
using z10 as the base architecture, the optimization work is going
to be focused more on z196 and zEC12.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187492 91177308-0d34-0410-b5e6-96231b3b80d8
Before the patch we took advantage of the fact that the compare and
branch are glued together in the selection DAG and fused them together
(where possible) while emitting them. This seemed to work well in practice.
However, fusing the compare so early makes it harder to remove redundant
compares in cases where CC already has a suitable value. This patch
therefore uses the peephole analyzeCompare/optimizeCompareInstr pair of
functions instead.
No behavioral change intended, but it paves the way for a later patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187116 91177308-0d34-0410-b5e6-96231b3b80d8
If the source of these instructions is spilled we should load the destination.
If the destination is spilled we should store the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186147 91177308-0d34-0410-b5e6-96231b3b80d8
The stack coloring pass has code to delete stores and loads that become
trivially dead after coloring. Extend it to cope with single instructions
that copy from one frame index to another.
The testcase happens to show an example of this kicking in at the moment.
It did occur in Real Code too though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185705 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes foldMemoryOperandImpl() so that it doesn't create duplicated
frame MMOs. I hadn't realized when writing r185434 that it was the caller's
responsibility to add these.
No behavioural change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185704 91177308-0d34-0410-b5e6-96231b3b80d8
...now that the problem that prompted the restriction has been fixed.
The original spill-02.py was a compromise because at the time I couldn't
find an example that actually failed without the two scavenging slots.
The version included here did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185701 91177308-0d34-0410-b5e6-96231b3b80d8
Add a mapping from register-based <INSN>R instructions to the corresponding
memory-based <INSN>. Use it to cut down on the number of spill loads.
Some instructions extend their operands from smaller fields, so this
required a new TSFlags field to say how big the unextended operand is.
This optimisation doesn't trigger for C(G)R and CL(G)R because in practice
we always combine those instructions with a branch. Adding a test for every
other case probably seems excessive, but it did catch a missed optimisation
for DSGF (fixed in r185435).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185529 91177308-0d34-0410-b5e6-96231b3b80d8