For a testcase like the following:
typedef unsigned long uint64_t;
typedef struct {
uint64_t lo;
uint64_t hi;
} blob128_t;
void add_128_to_128(const blob128_t *in, blob128_t *res) {
asm ("PAND %1, %0" : "+Q"(*res) : "Q"(*in));
}
where we'll fail to allocate the register for the output constraint,
our matching input constraint will not find a register to match,
and could try to search past the end of the current operands array.
On the idea that we'd like to attempt to keep compilation going
to find more errors in the module, change the error cases when
we're visiting inline asm IR to return immediately and avoid
trying to create a node in the DAG. This leaves us with only
a single error message per inline asm instruction, but allows us
to safely keep going in the general case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187470 91177308-0d34-0410-b5e6-96231b3b80d8
One form would accept a vector of pointers, and the other did not.
Make both accept vectors of pointers, and add an assertion
for the number of elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187464 91177308-0d34-0410-b5e6-96231b3b80d8
The unix one was returning no_such_file_or_directory, but the windows one
was return success.
Update the one one caller that was depending on the old behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187463 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids constant folding bitcast/ptrtoint/inttoptr combinations
that have illegal bitcasts between differently sized address spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187455 91177308-0d34-0410-b5e6-96231b3b80d8
Call into ComputeMaskedBits to figure out which bits are set on both add
operands and determine if the value is a power-of-two-or-zero or not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187445 91177308-0d34-0410-b5e6-96231b3b80d8
It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187444 91177308-0d34-0410-b5e6-96231b3b80d8
When registers must be live throughout the scheduling region, increase
the limit for the register class. Once we exceed the original limit,
they will be spilled, and there's no point further reducing pressure.
This isn't a perfect heuristics but avoids a situation where the
scheduler could become trapped by trying to achieve the impossible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187436 91177308-0d34-0410-b5e6-96231b3b80d8
When simplifying a (or (and B A) (and C ~A)) to a (VBSL A B C) ensure that the
bitwidth of the second operands to both ands match before comparing the negation
of the values.
Split the check of the value of the second operands to the ands. Move the cast
and variable declaration slightly higher to make it slightly easier to follow.
Bug-Id: 16700
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187404 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first of many upcoming patches for PowerPC fast
instruction selection support. This patch implements the minimum
necessary for a functional (but extremely limited) FastISel pass. It
allows the table-generated portions of the selector to be created and
used, but in most cases selection will fall back to the DAG selector.
None of the block terminator instructions are implemented yet, and
most interesting instructions require some special handling.
Therefore there aren't any new test cases with this patch. There will
be quite a few tests coming with future patches.
This patch adds the make/CMake support for the new code (including
tablegen -gen-fast-isel) and creates the FastISel object for PPC64 ELF
only. It instantiates the necessary virtual functions
(TargetSelectInstruction, TargetMaterializeConstant,
TargetMaterializeAlloca, tryToFoldLoadIntoMI, and FastLowerArguments),
but of these, only TargetMaterializeConstant contains any useful
implementation. This is present since the table-generated code
requires the ability to materialize integer constants for some
instructions.
This patch has been tested by building and running the
projects/test-suite code with -O0. All tests passed with the
exception of a couple of long-running tests that time out using -O0
code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187399 91177308-0d34-0410-b5e6-96231b3b80d8
build_vector is lowered to REG_SEQUENCE, which is something the register
allocator does a good job at optimizing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187397 91177308-0d34-0410-b5e6-96231b3b80d8
This patch prevents the following combine when the input vector is used more
than once.
insert_vector_elt (build_vector elt0, ..., eltN), NewEltIdx, idx
=>
build_vector elt0, ..., NewEltIdx, ..., eltN
The reasons are:
- Building a vector may be expensive, so try to reuse the existing part of a
vector instead of creating a new one (think big vectors).
- elt0 to eltN now have two users instead of one. This may prevent some other
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187396 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is due to the section name being explicitly mentioned in
the IR and differing between the two platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187394 91177308-0d34-0410-b5e6-96231b3b80d8
update testcase to make sure we generate debug info for walrus
by adding a non-trivial constructor and verify that we don't
emit an ODR signature for the type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187393 91177308-0d34-0410-b5e6-96231b3b80d8
32-bit symbols have "_" as global prefix, but when forming the name of
COMDAT sections this prefix is ignored. The current behavior assumes that
this prefix is always present which is not the case for 64-bit and names
are truncated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187356 91177308-0d34-0410-b5e6-96231b3b80d8