using the Curiously Recurring Template Pattern with LoopBase.
This will help further refactoring, and future functionality for
Loop. Also, Headers can now foward-declare Loop, instead of pulling
in LoopInfo.h or doing tricks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75519 91177308-0d34-0410-b5e6-96231b3b80d8
trip counts in more cases.
Generalize ScalarEvolution's isLoopGuardedByCond code to recognize
And and Or conditions, splitting the code out into an
isNecessaryCond helper function so that it can evaluate Ands and Ors
recursively, and make SCEVExpander be much more aggressive about
hoisting instructions out of loops.
test/CodeGen/X86/pr3495.ll has an additional instruction now, but
it appears to be due to an arbitrary register allocation difference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74048 91177308-0d34-0410-b5e6-96231b3b80d8
as signed max tests. Along with r73717, this helps CodeGen avoid
emitting code for a maximum operation for this class of loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73718 91177308-0d34-0410-b5e6-96231b3b80d8
casted induction variables in cases where the cast
isn't foldable. It ended up being a pessimization in
many cases. This could be fixed, but it would require
a bunch of complicated code in IVUsers' clients. The
advantages of this approach aren't visible enough to
justify it at this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73706 91177308-0d34-0410-b5e6-96231b3b80d8
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73431 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
rewrite the comparison if there is any implicit extension or truncation
on the induction variable. I'm planning for IVUsers to eventually take
over some of the work of this code, and for it to be generalized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72496 91177308-0d34-0410-b5e6-96231b3b80d8
of the comparison is defined inside the loop. This fixes a
use-before-def problem, because the transformation puts a use
of the RHS outside the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72149 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72093 91177308-0d34-0410-b5e6-96231b3b80d8
without one. Use it where we were using abs on
int64_t objects.
(I strongly suspect the casts to unsigned in the
fragments in LoopStrengthReduce are not doing whatever
the original intent was, but the obvious change to
uint64_t doesn't work. Maybe later.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71612 91177308-0d34-0410-b5e6-96231b3b80d8
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71535 91177308-0d34-0410-b5e6-96231b3b80d8
Also, if the compare is the only use, LSR would place the iv increment instruction before the compare instead in the latch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71485 91177308-0d34-0410-b5e6-96231b3b80d8
count down to 0 instead, under very restricted
circumstances. Adjust 4 testcases in which this
optimization fires.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71439 91177308-0d34-0410-b5e6-96231b3b80d8