The cause of the windows failures was fixed by r180791. Revert to the state
after Sabre's original revert.
Original message:
revert r179735, it has no testcases, and doesn't really make sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180844 91177308-0d34-0410-b5e6-96231b3b80d8
register-indirect address with an offset of 0.
It used to be that a DBG_VALUE is a register-indirect value if the offset
(operand 1) is nonzero. The new convention is that a DBG_VALUE is
register-indirect if the first operand is a register and the second
operand is an immediate. For plain registers use the combination reg, reg.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180816 91177308-0d34-0410-b5e6-96231b3b80d8
The actual storage was already using unsigned, but the interface was using
uint64_t. This is wasteful on 32 bits and looks to be the root causes of
a miscompilation on Windows where a value was being sign extended to 64bits
to compare with the result of getSlotIndex.
Patch by Pasi Parviainen!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180791 91177308-0d34-0410-b5e6-96231b3b80d8
The `llvm.tls_init_funcs' (created by the front-end) holds pointers to the TLS
initialization functions. These need to be placed into the correct section so
that they are run before `main()'.
<rdar://problem/13733006>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180737 91177308-0d34-0410-b5e6-96231b3b80d8
For regular object files this is only meaningful for common symbols. An object
file format with direct support for atoms should be able to provide alignment
information for all symbols.
This replaces getCommonSymbolAlignment and fixes
test-common-symbols-alignment.ll on darwin. This also includes a fix to
MachOObjectFile::getSymbolFlags. It was marking undefined symbols as common
(already tested by existing mcjit tests now that it is used).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180736 91177308-0d34-0410-b5e6-96231b3b80d8
This un-reverts r179735 and reverts commit r180574.
This fixes assertion failures for me locally and should fix the failures
on Windows reported widely on llvm-dev. We should check if the bots
caught this and if so why not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180722 91177308-0d34-0410-b5e6-96231b3b80d8
Re-submitting with fix for OCaml dependency problems (removing dependency on SectionMemoryManager when it isn't used).
Patch by Fili Pizlo
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180720 91177308-0d34-0410-b5e6-96231b3b80d8
This seems to me an obvious place to allow target passes to annotate
memory operations. There are plenty of bits, and I'm not aware of
another good way for early target passes to propagate hints along to
later passes. Target independent transforms can simply preserve them,
the way they preserve the other flags. Like MachineMemOperands in
general, if the target flags are lost we must still generate correct
code.
This has lots of uses, but I want this flexibility now to make it
easier to work with the new MachineTraceMetrics
analysis. MachineTraceMetrics can gather a lot of information about
instructions based on the surrounding code. This information can be
used to influence postRA machine passes that don't work on SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180666 91177308-0d34-0410-b5e6-96231b3b80d8
to determine whether or not we're on a darwin platform for debug code
emitting.
Solves the problem of a module with no triple on the command line
and no triple in the module using non-gdb ok features on darwin. Fix
up the member-pointers test to check the correct things for cross
platform (DW_FORM_flag is a good prefix).
Unfortunately no testcase because I have no ideas how to test something
without a triple and without a triple in the module yet check
precisely on two platforms. Ideas welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180660 91177308-0d34-0410-b5e6-96231b3b80d8
We switch the order of offset and field type to make TBAAStructType node
(name, parent node, offset) similar to scalar TBAA node (name, parent node).
TypeIsImmutable is added to TBAAStructTag node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180654 91177308-0d34-0410-b5e6-96231b3b80d8
Clarify documentation and API to make the difference between register and
register-indirect addressed locations more explicit. Put in a comment
to point out that with the current implementation we cannot specify
a register-indirect location with offset 0 (a breg 0 in DWARF).
No functionality change intended.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180641 91177308-0d34-0410-b5e6-96231b3b80d8
For Mach-O there were 2 implementations for parsing object files. A
standalone llvm/Object/MachOObject.h and llvm/Object/MachO.h which
implements the generic interface in llvm/Object/ObjectFile.h.
This patch adds the missing features to MachO.h, moves macho-dump to
use MachO.h and removes ObjectFile.h.
In addition to making sure that check-all is clean, I checked that the
new version produces exactly the same output in all Mach-O files in a
llvm+clang build directory (including executables and shared
libraries).
To test the performance, I ran macho-dump over all the files in a
llvm+clang build directory again, but this time redirecting the output
to /dev/null. Both the old and new versions take about 4.6 seconds
(2.5 user) to finish.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180624 91177308-0d34-0410-b5e6-96231b3b80d8
Since we can't guarantee that the original dbg.declare instrinsic
is removed by LowerDbgDeclare(), we need to make sure that we are
not inserting the same dbg.value intrinsic over and over.
This removes tons of redundant DIEs when compiling optimized code.
rdar://problem/13056109
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180615 91177308-0d34-0410-b5e6-96231b3b80d8
getRelocationAddress is for dynamic libraries and executables,
getRelocationOffset for relocatable objects.
Mark the getRelocationAddress of COFF and MachO as not implemented yet. Add a
test of ELF's. llvm-readobj -r now prints the same values as readelf -r.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180259 91177308-0d34-0410-b5e6-96231b3b80d8
For now, we just reschedule instructions that use the copied vregs and
let regalloc elliminate it. I would really like to eliminate the
copies on-the-fly during scheduling, but we need a complete
implementation of repairIntervalsInRange() first.
The general strategy is for the register coalescer to eliminate as
many global copies as possible and shrink live ranges to be
extended-basic-block local. The coalescer should not have to worry
about resolving local copies (e.g. it shouldn't attemp to reorder
instructions). The scheduler is a much better place to deal with local
interference. The coalescer side of this equation needs work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180193 91177308-0d34-0410-b5e6-96231b3b80d8
now taken care of by the frontend, which allows us to parse arbitrary C/C++
variables.
Part of rdar://13663589
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180037 91177308-0d34-0410-b5e6-96231b3b80d8
Also add a check for llvm.used in the verifier and simplify clients now that
they can assume they have a ConstantArray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180019 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r179840 with a fix to test/DebugInfo/two-cus-from-same-file.ll
I'm not sure why that test only failed on ARM & MIPS and not X86 Linux, even
though the debug info was clearly invalid on all of them, but this ought to fix
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179996 91177308-0d34-0410-b5e6-96231b3b80d8
I think it's almost impossible to fold atomic fences profitably under
LLVM/C++11 semantics. As a result, this is now unused and just
cluttering up the target interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179940 91177308-0d34-0410-b5e6-96231b3b80d8
trying to move as much FastISel logic as possible out of the main path in
SelectionDAGISel - intermixing them just adds confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179902 91177308-0d34-0410-b5e6-96231b3b80d8
Adding another CU-wide list, in this case of imported_modules (since they
should be relatively rare, it seemed better to add a list where each element
had a "context" value, rather than add a (usually empty) list to every scope).
This takes care of DW_TAG_imported_module, but to fully address PR14606 we'll
need to expand this to cover DW_TAG_imported_declaration too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179836 91177308-0d34-0410-b5e6-96231b3b80d8
When the SlotIndexes pass was introduced it was intended to support insertion
of code during register allocation. Removal of code was a minor consideration
(and raised the question of what to do about dangling SlotIndex objects pointing
to the erased index), so I opted to keep all indexes around indefinitely and
simply null out those that weren't being used.
Nowadays people are moving more code around (e.g. via HandleMove), which means
more zombie indexes. I want to start killing off indexes when we're done with
them to reclaim the resources they use up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179834 91177308-0d34-0410-b5e6-96231b3b80d8
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179804 91177308-0d34-0410-b5e6-96231b3b80d8
Semantics of parameters named Index and Idx were inconsistent between
"include/llvm/IR/Attributes.h", "lib/IR/AttributeImpl.h" and
"lib/IR/Attributes.cpp": sometimes these were fixed 1-based indexes of IR
parameters (or AttributeSet::ReturnIndex for IR return values or
AttributeSet::FunctionIndex for IR functions), other times they were the
internal slot for storage in the underlying AttributeSetImpl. I renamed usage of
the former to "Index" and usage of the latter to "Slot" ("Slot" was already
being used consistently for the latter in a subset of cases)
Patch by Stephen Lin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179791 91177308-0d34-0410-b5e6-96231b3b80d8
1. Verify::VerifyParameterAttrs in "lib/IR/Verifier.cpp" and
AttrBuilder::removeFunctionOnlyAttrs in "lib/IR/Attributes.cpp" (only called
by Verify::VerifyFunctionAttrs) separately maintained a list of function-only
attribute types. I've consolidated the logic into a new function used for
both cases in "lib/IR/Verifier.cpp", so this logic is in one place (other
than the AsmParser front-end)
2. Various functions in "lib/IR/Verifier.cpp" passed AttributeSet around by
reference needlessly, as it's just a handle to an immutable pimpl body.
Patch by Stephen Lin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179790 91177308-0d34-0410-b5e6-96231b3b80d8
It's sometimes beneficial to emit a testcase with the old style attribute
syntax. Allow someone to do this.
<rdar://problem/13563209>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179735 91177308-0d34-0410-b5e6-96231b3b80d8
* We only ever specialize these templates with an instantiation of ELFType,
so we don't need a template template.
* Replace LLVM_ELF_COMMA with just passing the individual parameters to the
macro. This requires a second macro for when we only have ELFT, but that
is still a small win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179726 91177308-0d34-0410-b5e6-96231b3b80d8
I will remove the isBigEndianHost function once I update clang.
The ifdef logic is designed to
* not use configure/cmake to avoid breaking -arch i686 -arch ppc.
* default to little endian
* be as small as possible
It looks like sys/endian.h is the preferred header on most modern BSD systems,
but it is better to change this in a followup patch as machine/endian.h is
available on FreeBSD, OpenBSD, NetBSD and OS X.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179527 91177308-0d34-0410-b5e6-96231b3b80d8
This is a rework of the broken parts in r179373 which were subsequently reverted in r179374 due to incompatibility with C++98 compilers. This version should be ok under C++98.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179520 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator expects minimal physreg live ranges. Schedule
physreg copies accordingly. This is slightly tricky when they occur in
the middle of the scheduling region. For now, this is handled by
rescheduling the copy when its associated instruction is
scheduled. Eventually we may instead bundle them, but only if we can
preserve the bundles as parallel copies during regalloc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179449 91177308-0d34-0410-b5e6-96231b3b80d8
We are now able to handle big endian macho files in llvm-readobject. Thanks to
David Fang for providing the object files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179440 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS64EL relocation entries have up to three relocation operations. Because
libObject only exposes a single relocation name, use the concatenation of
the individual relocation type names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179357 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Print more information about relocations.
With this patch llvm-readobj now prints if a relocation is pcrel, its length,
if it is extern and if it is scattered.
It also refactors the code a bit to use bit fields instead of shifts and
masks all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179345 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch llvm-readobj now prints if a relocation is pcrel, its length,
if it is extern and if it is scattered.
It also refactors the code a bit to use bit fields instead of shifts and
masks all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179294 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used in clang to decide if it should create an @file or not. It
will be tested on the clang side.
Patch by Nathan Froyd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179285 91177308-0d34-0410-b5e6-96231b3b80d8
It was returning the loaded address of the section containing the relocation,
which really doesn't seem to be the intent of this function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179255 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for the COFF relocation types IMAGE_REL_I386_DIR32NB and
IMAGE_REL_AMD64_ADDR32NB for 32- and 64-bit respectively. These are
similar to normal 4-byte relocations except that they do not include
the base address of the image.
Image-relative relocations are used for debug information (32-bit) and
SEH unwind tables (64-bit).
A new MCSymbolRef variant called 'VK_COFF_IMGREL32' is introduced to
specify such relocations. For AT&T assembly, this variant can be accessed
using the symbol suffix '@imgrel'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179240 91177308-0d34-0410-b5e6-96231b3b80d8
temporarily while we work on plumbing through some changes to continue
supporting gdb on darwin.
This reverts commit r179122.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179222 91177308-0d34-0410-b5e6-96231b3b80d8
Compact unwind has an encoding for when we're not able to generate compact
unwind and must generate an EH frame instead. Track that, but still emit that CU
encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179220 91177308-0d34-0410-b5e6-96231b3b80d8
Test cases that regressed due to r179115, plus a few more, were added in
r179182. Original commit message below:
[ms-inline asm] Use parsePrimaryExpr in lieu of parseExpression if we need to
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
Part of rdar://13611297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179187 91177308-0d34-0410-b5e6-96231b3b80d8
Since we only ever instantiate with a type that is a MachOType instantiation,
we don't need to pass template argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179178 91177308-0d34-0410-b5e6-96231b3b80d8
The target hooks are getting out of hand. What does it mean to run
before or after regalloc anyway? Allowing either Pass* or AnalysisID
pass identification should make it much easier for targets to use the
substitutePass and insertPass APIs, and create less need for badly
named target hooks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179140 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds the infrastructure for performing bottom-up SLP vectorization (and other optimizations) on parallel computations.
The infrastructure has three potential users:
1. The loop vectorizer needs to be able to vectorize AOS data structures such as (sum += A[i] + A[i+1]).
2. The BB-vectorizer needs this infrastructure for bottom-up SLP vectorization, because bottom-up vectorization is faster to compute.
3. A loop-roller needs to be able to analyze consecutive chains and roll them into a loop, in order to reduce code size. A loop roller does not need to create vector instructions, and this infrastructure separates the chain analysis from the vectorization.
This patch also includes a simple (100 LOC) bottom up SLP vectorizer that uses the infrastructure, and can vectorize this code:
void SAXPY(int *x, int *y, int a, int i) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179117 91177308-0d34-0410-b5e6-96231b3b80d8
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
The existing test cases exercise this patch.
rdar://13611297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179115 91177308-0d34-0410-b5e6-96231b3b80d8
rather than deriving the StringRef from the Start and End SMLocs.
Using the Start and End SMLocs works fine for operands such as [Symbol], but
not for operands such as [Symbol + ImmDisp]. All existing test cases that
reference a variable exercise this patch.
rdar://13602265
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179109 91177308-0d34-0410-b5e6-96231b3b80d8
Some parts of PointerIntPair assumed that the IntType of the pair was implicitly
convertible to intptr_t, which is not the case for enum class values. Add a
static_cast<intptr_t> to make these conversions explicit and allow
PointerIntPair to be used with an enum class IntType. While we're here, rename
some of the argument values so we don't have variables named "Int" floating
around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179073 91177308-0d34-0410-b5e6-96231b3b80d8
The code in getTypeConversion attempts to promote the element vector type
before it trys to split or widen the vector.
After it failed finding a legal vector type by promoting it would continue using
the promoted vector element type. Thereby missing legal splitted vector types.
For example the type v32i32 that has a legal split of 4 x v3i32 on x86/sse2
would be transformed to: v32i256 and from there on successively split to:
v16i256, v8i256, v1i256 and then finally ends up as an i64 type.
By resetting the vector element type to the original vector element type that
existed before the promotion the code will attempt to split the vector type to
smaller vector widths of the same type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178999 91177308-0d34-0410-b5e6-96231b3b80d8
These were the last missing forwarding functions. Also consistently use
the forwarding functions instead of using MachOObj directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178992 91177308-0d34-0410-b5e6-96231b3b80d8
LoadCommandInfo was needed to keep a command and its offset in the file. Now
that we always have a pointer to the command, we don't need the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178991 91177308-0d34-0410-b5e6-96231b3b80d8
This comment documents the current behavior of the ARM implementation of this
callback, and also the soon-to-be-committed PPC version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178959 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PEI as previously described, but correctly handles the case where
the instruction defining the virtual register to be scavenged is the first in
the block. Arnold provided me with a bugpoint-reduced test case, but even that
seems too large to use as a regression test. If I'm successful in cleaning it
up then I'll commit that as well.
Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178919 91177308-0d34-0410-b5e6-96231b3b80d8
During LTO, the target options on functions within the same Module may
change. This would necessitate resetting some of the back-end. Do this for X86,
because it's a Friday afternoon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178917 91177308-0d34-0410-b5e6-96231b3b80d8
Reverting because this breaks one of the LTO builders. Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178916 91177308-0d34-0410-b5e6-96231b3b80d8
InMemoryStruct is extremely dangerous as it returns data from an internal
buffer when the endiannes doesn't match. This should fix the tests on big
endian hosts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178875 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178845 91177308-0d34-0410-b5e6-96231b3b80d8
On certain architectures we can support efficient vectorized version of
instructions if the operand value is uniform (splat) or a constant scalar.
An example of this is a vector shift on x86.
We can efficiently support
for (i = 0 ; i < ; i += 4)
w[0:3] = v[0:3] << <2, 2, 2, 2>
but not
for (i = 0; i < ; i += 4)
w[0:3] = v[0:3] << x[0:3]
This patch adds a parameter to getArithmeticInstrCost to further qualify operand
values as uniform or uniform constant.
Targets can then choose to return a different cost for instructions with such
operand values.
A follow-up commit will test this feature on x86.
radar://13576547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178807 91177308-0d34-0410-b5e6-96231b3b80d8
Normally r_info is just a 32 of 64 bit number matching the endian of the rest
of the file. Unfortunately, mips 64 bit little endian is special: The top 32
bits are a little endian number and the following 32 are a big endian one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178694 91177308-0d34-0410-b5e6-96231b3b80d8
ELF with support for:
- File headers
- Section headers + data
- Relocations
- Symbols
- Unwind data (only COFF/Win64)
The output format follows a few rules:
- Values are almost always output one per line (as elf-dump/coff-dump already do). - Many values are translated to something readable (like enum names), with the raw value in parentheses.
- Hex numbers are output in uppercase, prefixed with "0x".
- Flags are sorted alphabetically.
- Lists and groups are always delimited.
Example output:
---------- snip ----------
Sections [
Section {
Index: 1
Name: .text (5)
Type: SHT_PROGBITS (0x1)
Flags [ (0x6)
SHF_ALLOC (0x2)
SHF_EXECINSTR (0x4)
]
Address: 0x0
Offset: 0x40
Size: 33
Link: 0
Info: 0
AddressAlignment: 16
EntrySize: 0
Relocations [
0x6 R_386_32 .rodata.str1.1 0x0
0xB R_386_PC32 puts 0x0
0x12 R_386_32 .rodata.str1.1 0x0
0x17 R_386_PC32 puts 0x0
]
SectionData (
0000: 83EC04C7 04240000 0000E8FC FFFFFFC7 |.....$..........|
0010: 04240600 0000E8FC FFFFFF31 C083C404 |.$.........1....|
0020: C3 |.|
)
}
]
---------- snip ----------
Relocations and symbols can be output standalone or together with the section header as displayed in the example.
This feature set supports all tests in test/MC/COFF and test/MC/ELF (and I suspect all additional tests using elf-dump), making elf-dump and coff-dump deprecated.
Patch by Nico Rieck!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178679 91177308-0d34-0410-b5e6-96231b3b80d8
Add utilities to create struct nodes in TBAA type DAG and to create path-aware
tags. The format of struct nodes in TBAA type DAG: a unique name, a list of
fields with field offsets and field types. The format of path-aware tags:
a base type in TBAA type DAG, an access type and an offset relative to the base
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178564 91177308-0d34-0410-b5e6-96231b3b80d8
The new instruction scheduling models provide information about the
number of cycles consumed on each processor resource. This makes it
possible to estimate ILP more accurately than simply counting
instructions / issue width.
The functions getResourceDepth() and getResourceLength() now identify
the limiting processor resource, and return a cycle count based on that.
This gives more precise resource information, particularly in traces
that use one resource a lot more than others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178553 91177308-0d34-0410-b5e6-96231b3b80d8
Revision 177141 caused a regression in all but
mips64 little endian. That is because none of the
other Mips targets had test cases checking the
contents of the .eh_frame section. This patch fixes
both the llvm code and adds an assembler test case
to include the current 4 flavors.
The test cases unfortunately rely on llvm-objdump. A
preferable method would be to use a pretty printer output
such as what readelf -wf <elf_file> would give.
I also changed the name of the test case to correct a typo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178506 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 617330909f.
It broke the bots:
/home/clangbuild2/clang-ppc64-2/llvm.src/unittests/ADT/SmallVectorTest.cpp:150: PushPopTest
/home/clangbuild2/clang-ppc64-2/llvm.src/unittests/ADT/SmallVectorTest.cpp:118: Failure
Value of: v[i].getValue()
Actual: 0
Expected: value
Which is: 2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178334 91177308-0d34-0410-b5e6-96231b3b80d8
requires that the return type of *r for all iterators r be reference,
where reference is defined in [iterator.requirements.general]/p11 as
iterator_traits<X>::reference, and X is the type of r.
But in CFG.h, the dereference operator of PredIterator and SuccIterator
return pointer, not reference.
Furthermore the nested type reference is value_type&, which is not the
type returned from operator*().
This patch simply makes the iterator::reference type value_type*, which
is what the operator*() returns, and then re-lables the return type as
reference.
From a functionality point of view, the only difference is that the
nested reference type is now value_type* instead of value_type&.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178240 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 342d92c7a0.
Turns out we're going with a different schema design to represent
DW_TAG_imported_modules so we won't need this extra field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178215 91177308-0d34-0410-b5e6-96231b3b80d8
Made sure we were looking a correct section
Added Mips32/64 as an extra check
Updated llvm-objdump to generate symbolic info for Mips relocations
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178190 91177308-0d34-0410-b5e6-96231b3b80d8
As far as simplify_type is concerned, there are 3 kinds of smart pointers:
* const correct: A 'const MyPtr<int> &' produces a 'const int*'. A
'MyPtr<int> &' produces a 'int *'.
* always const: Even a 'MyPtr<int> &' produces a 'const int*'.
* no const: Even a 'const MyPtr<int> &' produces a 'int*'.
This patch then does the following:
* Removes the unused specializations. Since they are unused, it is hard
to know which kind should be implemented.
* Make sure we don't drop const.
* Fix the default forwarding so that const correct pointer only need
one specialization.
* Simplifies the existing specializations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178147 91177308-0d34-0410-b5e6-96231b3b80d8