location in simplifycfg. In the old days, SimplifyCFG was never run on
the entry block, so we had to scan over all preds of the BB passed into
simplifycfg to do this xform, now we can just check blocks ending with
a condbranch. This avoids a scan over all preds of every simplified
block, which should be a significant compile-time perf win on functions
with lots of edges. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121668 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially dead, since these have side effects. This makes the
(misnamed) MemoryUseIntrinsic class dead, so remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120382 91177308-0d34-0410-b5e6-96231b3b80d8
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119727 91177308-0d34-0410-b5e6-96231b3b80d8
hasConstantValue. I was leery of using SimplifyInstruction
while the IR was still in a half-baked state, which is the
reason for delaying the simplification until the IR is fully
cooked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119494 91177308-0d34-0410-b5e6-96231b3b80d8
it isn't unreachable and should not be zapped. The check for the entry block
was missing in one case: a block containing a unwind instruction. While there,
do some small cleanups: "M" is not a great name for a Function* (it would be
more appropriate for a Module*), change it to "Fn"; use Fn in more places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117224 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
initialization functions that initialize the set of passes implemented in
that library. Add C bindings for these functions as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115927 91177308-0d34-0410-b5e6-96231b3b80d8
a header declaring them all. This is also where we will declare per-library pass-set
initializer functions down the road.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115900 91177308-0d34-0410-b5e6-96231b3b80d8
I'm sure it is harmless. Original commit message:
If PrototypeValue is erased in the middle of using the SSAUpdator
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112810 91177308-0d34-0410-b5e6-96231b3b80d8
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112699 91177308-0d34-0410-b5e6-96231b3b80d8
fix: add a flag to MapValue and friends which indicates whether
any module-level mappings are being made. In the common case of
inlining, no module-level mappings are needed, so MapValue doesn't
need to examine non-function-local metadata, which can be very
expensive in the case of a large module with really deep metadata
(e.g. a large C++ program compiled with -g).
This flag is a little awkward; perhaps eventually it can be moved
into the ClonedCodeInfo class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112190 91177308-0d34-0410-b5e6-96231b3b80d8
which does the same thing. This eliminates redundant code and
handles MDNodes better. MDNode linking still doesn't fully
work yet though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111941 91177308-0d34-0410-b5e6-96231b3b80d8
that it avoids a lot of unnecessary cloning by avoiding remapping
MDNode cycles when none of the nodes in the cycle actually need to
be remapped. Also it uses the new temporary MDNode mechanism.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111922 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate redundant successors.
- Convert an indirectbr with one successor into a direct branch.
Also, generalize SimplifyCFG to be able to be run on a function entry block.
It knows quite a few simplifications which are applicable to the entry
block, and it only needs a few checks to avoid trouble with the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111060 91177308-0d34-0410-b5e6-96231b3b80d8
dependence on DominanceFrontier. Instead, add an explicit DominanceFrontier
pass in StandardPasses.h to ensure that it gets scheduled at the right
time.
Declare that loop unrolling preserves ScalarEvolution, and shuffle some
getAnalysisUsages.
This eliminates one LoopSimplify and one LCCSA run in the standard
compile opts sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109413 91177308-0d34-0410-b5e6-96231b3b80d8
it *changing* the things it replaces, not just causing them
to drop to null. There is no functionality change yet, but
this is required for a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108414 91177308-0d34-0410-b5e6-96231b3b80d8
"bonus" instruction to be speculatively executed. Add a heuristic to
ensure we're not tripping up out-of-order execution by checking that this bonus
instruction only uses values that were already guaranteed to be available.
This allows us to eliminate the short circuit in (x&1)&&(x&2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108351 91177308-0d34-0410-b5e6-96231b3b80d8
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106893 91177308-0d34-0410-b5e6-96231b3b80d8
Failure to seed metdata in such cases causes troubles when in a cloned module, metadata from a new module refers to values in old module. Usually this results in mysterious bugpoint crashes. For example,
Checking to see if we can delete global inits: Unknown constant!
UNREACHABLE executed at /d/g/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp:904!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106592 91177308-0d34-0410-b5e6-96231b3b80d8
the newly created allocas may be used by inlined calls, so these
need to have their tail call flags cleared. Fixes PR7272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105255 91177308-0d34-0410-b5e6-96231b3b80d8
that can have a big effect :). The first is to enable the
iterative SCC passmanager juice that kicks in when the
scc passmgr detects that a function pass has devirtualized
a call. In this case, it will rerun all the passes it
manages on the SCC, up to the iteration count limit (4). This
is useful because a function pass may devirualize a call, and
we want the inliner to inline it, or pruneeh to infer stuff
about it, etc.
The second patch is to add *all* call sites to the
DevirtualizedCalls list the inliner uses. This list is
about to get renamed, but the jist of this is that the
inliner now reconsiders *all* inlined call sites as candidates
for further inlining. The intuition is this that in cases
like this:
f() { g(1); } g(int x) { h(x); }
We analyze this bottom up, and may decide that it isn't
profitable to inline H into G. Next step, we decide that it is
profitable to inline G into F, and do so, which means that F
now calls H. Even though the call from G -> H may not have been
profitable to inline, the call from F -> H may be (in this case
because a constant allows folding etc).
In my spot checks, this doesn't have a big impact on code. For
example, the LLC output for 252.eon grew from 0.02% (from
317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612
to 1520964 bytes). 252.eon never iterated in the SCC Passmgr,
176.gcc iterated at most 1 time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102823 91177308-0d34-0410-b5e6-96231b3b80d8
add a version of createLowerInvokePass that allows the client
to specify whether it wants "expensive" or "cheap" lowering.
Patch by Alex Mac!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102402 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug where calls inlined into an invoke would get
changed into an invoke but the array would keep pointing to
the (now dead) call. The improved inliner behavior is still
disabled for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102196 91177308-0d34-0410-b5e6-96231b3b80d8
that appear in the SCC as a result of inlining as candidates
for inlining. Change this so that it *does* consider call
sites that change from being indirect to being direct as a
result of inlining. This allows it to completely
"devirtualize" the testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102146 91177308-0d34-0410-b5e6-96231b3b80d8
arguments are handled with a new InlineFunctionInfo class. This
makes it easier to extend InlineFunction to return more info in the
future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102137 91177308-0d34-0410-b5e6-96231b3b80d8
define void @f3(void (i8*)* %__f) ssp {
entry:
call void %__f(i8* undef)
unreachable
}
define void @f4(i8* %this) ssp align 2 {
entry:
call void @f3(void (i8*)* @f2) ssp
ret void
}
The inliner is turning the indirect call to %__f into a direct
call to F2. Make the call graph more precise when this happens.
The inliner doesn't revisit call sites introduced by inlining,
so there isn't an easy way to test for this, but a more precise
callgraph is a good thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102131 91177308-0d34-0410-b5e6-96231b3b80d8
to determine where to place PHIs by iteratively comparing reaching definitions
at each block. That was just plain wrong. This version now computes the
dominator tree within the subset of the CFG where PHIs may need to be placed,
and then places the PHIs in the iterated dominance frontier of each definition.
The rest of the patch is mostly the same, with a few more performance
improvements added in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101612 91177308-0d34-0410-b5e6-96231b3b80d8
Probably the best way to know that all getOperand() calls have been handled
is to replace that API instead of updating.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101579 91177308-0d34-0410-b5e6-96231b3b80d8
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101465 91177308-0d34-0410-b5e6-96231b3b80d8
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101397 91177308-0d34-0410-b5e6-96231b3b80d8
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101364 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100304 91177308-0d34-0410-b5e6-96231b3b80d8
(what was I thinking?) and there's also a problem with LCSSA. I'll try again
later with fixes.
--- Reverse-merging r100263 into '.':
U lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100177 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100148 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100147 into '.':
U include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100131 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100130 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100126 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100050 into '.':
D test/Transforms/GVN/2010-03-31-RedundantPHIs.ll
--- Reverse-merging r100047 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100264 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100191 91177308-0d34-0410-b5e6-96231b3b80d8
PHIs. The previous algorithm was unable to reliably detect when existing
PHIs in a cycle can be reused. I'm still working on reducing a testcase.
Radar 7711900.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100047 91177308-0d34-0410-b5e6-96231b3b80d8
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99928 91177308-0d34-0410-b5e6-96231b3b80d8
I have audited all getOperandNo calls now, fixing
hidden assumptions. CallSite related uglyness will
be eliminated successively.
Note this patch has a long and griveous history,
for all the back-and-forths have a look at
CallSite.h's log.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99399 91177308-0d34-0410-b5e6-96231b3b80d8
for the noinline attribute, and make the inliner refuse to
inline a call site when the call site is marked noinline even
if the callee isn't. This fixes PR6682.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99341 91177308-0d34-0410-b5e6-96231b3b80d8
This time I did a self-hosted bootstrap on Linux x86-64,
with no problems. Let's see how darwin 64-bit self-hosting
goes. At the first sign of failure I'll back this out.
Maybe the valgrind bots give me a hint of what may be wrong
(it at all).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98957 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step towards eliminating unncessary constructor checks in light weight DIDescriptor wrappers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97947 91177308-0d34-0410-b5e6-96231b3b80d8
can be used in more places. Add an argument for the TargetData that
most of them need. Update for the getInt8PtrTy() change. Should be
no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97844 91177308-0d34-0410-b5e6-96231b3b80d8
which branch on undef to branch on a boolean constant for the edge
exiting the loop. This helps ScalarEvolution compute trip counts for
loops.
Teach ScalarEvolution to recognize single-value PHIs, when safe, and
ForgetSymbolicName to forget such single-value PHI nodes as apprpriate
in ForgetSymbolicName.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97126 91177308-0d34-0410-b5e6-96231b3b80d8
and T->isPointerTy(). Convert most instances of the first form to the second form.
Requested by Chris.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
to a PHI, avoid it in the common case where the BB occurs
in the same index for multiple phis. This speeds up CGP on
an insane testcase from 8.35 to 3.58s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96080 91177308-0d34-0410-b5e6-96231b3b80d8
The testcase from pr6198 does not crash for me -- I don't know what's up with
that -- so I'm not adding it to the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94984 91177308-0d34-0410-b5e6-96231b3b80d8
unconditionally. Besides checking the offset, also check that the underlying
object is aligned as much as the load itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94875 91177308-0d34-0410-b5e6-96231b3b80d8
This was already being done in SSAUpdater::GetValueAtEndOfBlock so I've
just changed SSAUpdater to check for existing PHIs in both places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94690 91177308-0d34-0410-b5e6-96231b3b80d8
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94164 91177308-0d34-0410-b5e6-96231b3b80d8
ValueMapper.cpp ends up calling an out of line
__ZNK4llvm12PATypeHolder3getEv, which is a template and llvm-config
determines arbitrarily to use the one in libipo. This sucks, but
keeping the #include is a reasonable workaround.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94103 91177308-0d34-0410-b5e6-96231b3b80d8