Chris Lattner says the edis interface is going away. It doesn't make
sense to land something that will go away in the near future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152508 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a C++ change to EDDisassembler's ctor to function properly
(the llvm::InitializeAll* functions aren't being called currently and
there is no way to call them from Python).
Code is partially tested and works well enough for initial commit. There
are probably many small bugs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152506 91177308-0d34-0410-b5e6-96231b3b80d8
The 'CmpInst::isFalseWhenEqual' function returns 'false' for values other than
simply equality. For instance, it returns 'false' for <= or >=. This isn't the
correct behavior for this transformation, which is checking for strict equality
and non-equality. It was causing the gcc.c-torture/execute/frame-address.c test
to fail because it would completely (and incorrectly) optimize a whole function
into a 'ret i32 0'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152497 91177308-0d34-0410-b5e6-96231b3b80d8
a common collection of methods on Value, and share their implementation.
We had two variations in two different places already, and I need the
third variation for inline cost estimation.
Reviewed by Duncan Sands on IRC, but further comments here welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152490 91177308-0d34-0410-b5e6-96231b3b80d8
The old way of determine when and where to spill a value that was used inside of
a landing pad resulted in spilling that value everywhere and not just at the
invoke edge.
This algorithm determines which values are used within a landing pad. It then
spills those values before the invoke and reloads them before the uses. This
should prevent excessive spilling in many cases, e.g. inside of loops.
<rdar://problem/10609139>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152486 91177308-0d34-0410-b5e6-96231b3b80d8
It is now possible to load object files and scan over sections, symbols,
and relocations! Includes test code with partial coverage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152482 91177308-0d34-0410-b5e6-96231b3b80d8
* Add enums and structures for GNU version information.
* Implement extraction of that information on a per-symbol basis (ELFObjectFile::getSymbolVersion).
* Implement a generic interface, GetELFSymbolVersion(), for getting the symbol version from the ObjectFile (hides the templating).
* Have llvm-readobj print out the version, when available.
* Add a test for the new feature: readobj-elf-versioning.test
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152436 91177308-0d34-0410-b5e6-96231b3b80d8
traversal, consider nodes for which the only successors are backedges
which the traversal is ignoring to be exit nodes. This fixes a problem
where the bottom-up traversal was failing to visit split blocks along
split loop backedges. This fixes rdar://10989035.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152421 91177308-0d34-0410-b5e6-96231b3b80d8
~0U might be i32 on 32-bit hosts, then (uint64_t)~0U might not be expected as (i64)0xFFFFFFFF_FFFFFFFF, but as (i64)0x00000000_FFFFFFFF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152407 91177308-0d34-0410-b5e6-96231b3b80d8
negative switch cases if the branch condition is known to be positive.
Inspired by a recent improvement to GCC's VRP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152405 91177308-0d34-0410-b5e6-96231b3b80d8
This contains a semi-functional skeleton for the implementation of the
LLVM bindings for Python.
The API for the Object.h interface is roughly designed but not
implemented. MemoryBufferRef is implemented and actually appears to
work!
The ObjectFile unit test fails with a segmentation fault because the
LLVM library isn't being properly initialized. The build system doesn't
know about this code yet, so no alerts should fire.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152397 91177308-0d34-0410-b5e6-96231b3b80d8
caused several clients to select the slow variation. =[ This is extra
annoying because we don't have any realistic way of testing this -- by
design, these two functions *must* compute the same value.
Found while inspecting the output of some benchmarks I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152369 91177308-0d34-0410-b5e6-96231b3b80d8
introduced. Specifically, there are cost reductions for all
constant-operand icmp instructions against an alloca, regardless of
whether the alloca will in fact be elligible for SROA. That means we
don't want to abort the icmp reduction computation when we abort the
SROA reduction computation. That in turn frees us from the need to keep
a separate worklist and defer the ICmp calculations.
Use this new-found freedom and some judicious function boundaries to
factor the innards of computing the cost factor of any given instruction
out of the loop over the instructions and into static helper functions.
This greatly simplifies the code, and hopefully makes it more clear what
is happening here.
Reviewed by Eric Christopher. There is some concern that we'd like to
ensure this doesn't get out of hand, and I plan to benchmark the effects
of this change over the next few days along with some further fixes to
the inline cost.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152368 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message from r147481:
DAGCombine for transforming 128->256 casts into a vmovaps, rather
then a vxorps + vinsertf128 pair if the original vector came from a load.
Fix:
Unaligned loads need to generate a vmovups.
rdar://10974078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152366 91177308-0d34-0410-b5e6-96231b3b80d8