more than one phi, since that leads to higher register pressure on
entry to the phi. This is especially problematic when the phi is in
a loop header, as it increases register pressure throughout the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81993 91177308-0d34-0410-b5e6-96231b3b80d8
argpromote to avoid invalidating an iterator. This fixes PR4977.
All clang tests now pass with expensive checking (on my system
at least).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81843 91177308-0d34-0410-b5e6-96231b3b80d8
within the notional bounds of the static type of the getelementptr (which
is not the same as "inbounds") from GlobalOpt into a utility routine,
and use it in ConstantFold.cpp to check whether there are any mis-behaved
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81478 91177308-0d34-0410-b5e6-96231b3b80d8
loop exit edge -- new PHIs may be needed not only for the additional
splits that are made to preserve LoopSimplify form, but also for the
original split. Factor out the code that inserts new PHIs so that it
can be used for both. Remove LoopRotation.cpp's code for manually
updating LCSSA form, as it is now redundant. This fixes PR4934.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81363 91177308-0d34-0410-b5e6-96231b3b80d8
that get created during loop unswitching, and fix SplitBlockPredecessors'
LCSSA updating code to create new PHIs instead of trying to just move
existing ones.
Also, optimize Loop::verifyLoop, since it gets called a lot. Use
searches on a sorted list of blocks instead of calling the "contains"
function, as is done in other places in the Loop class, since "contains"
does a linear search. Also, don't call verifyLoop from LoopSimplify or
LCSSA, as the PassManager is already calling verifyLoop as part of
LoopInfo's verifyAnalysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81221 91177308-0d34-0410-b5e6-96231b3b80d8
extractelement operations into a bitcast of the pointer,
then a gep, then a scalar load. Disable this when the vector
only has one element, because it leads to infinite loops in
instcombine (PR4908).
This transformation seems like a really bad idea to me, as it
will likely disable CSE of vector load/stores etc and can be
better done in the code generator when profitable. This
goes all the way back to the first days of packed types,
r25299 specifically.
I'll let those people who care about the performance of vector
code decide what to do with this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81185 91177308-0d34-0410-b5e6-96231b3b80d8
compile-time constant integers or that are out of bounds for their
corresponding static array types. These can cause aliasing that
GlobalOpt assumes won't happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81165 91177308-0d34-0410-b5e6-96231b3b80d8
an aggregate store overlapping a different aggregate store, despite
the stores having distinct addresses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81164 91177308-0d34-0410-b5e6-96231b3b80d8
is missing the inbounds flag. This is slightly conservative, but it
avoids problems with two constants pointing to the same address but
getting distinct entries in the Memory DenseMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81163 91177308-0d34-0410-b5e6-96231b3b80d8
- I think there are more instances of this, but I think they are fixed in Dan's
incoming patch. This one was preventing me from doing a bugpoint reduction
though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81103 91177308-0d34-0410-b5e6-96231b3b80d8
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80998 91177308-0d34-0410-b5e6-96231b3b80d8
that these passes are properly preserved.
Fix several transformation passes that claimed to preserve LoopSimplify
form but weren't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80926 91177308-0d34-0410-b5e6-96231b3b80d8
instead of a bool argument, and to do the dominator check itself.
This makes it eaiser to use when DominatorTree information is
available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80920 91177308-0d34-0410-b5e6-96231b3b80d8
Removed inverted flag form MaximumSpanningTree, also do not handle so much
information to MaximumSpanningTree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80911 91177308-0d34-0410-b5e6-96231b3b80d8
simplifylibcalls optimization is thus valid for C++ but not C.
It's not important enough to worry about for C++ apps, so just
remove it.
rdar://7191924
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80887 91177308-0d34-0410-b5e6-96231b3b80d8