We were trying to look through COPY instructions, but only to the next
instruction in a BB and incorrectly anyway. The cases where that would actually
be a good idea are rare enough (and not even tested!) that it's not worth
trying to get right.
rdar://20721342
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236050 91177308-0d34-0410-b5e6-96231b3b80d8
This is a compromise: with this simple patch, we should always handle a chain of exactly 3
operations optimally, but we're not generating the optimal balanced binary tree for a longer
sequence.
In general, this transform will reduce the dependency chain for a sequence of instructions
using N operands from a worst case N-1 dependent operations to N/2 dependent operations.
The optimal balanced binary tree would reduce the chain to log2(N).
The trade-off for not dealing with longer sequences is: (1) we have less complexity in the
compiler, (2) we avoid unknown compile-time blowup calculating a balanced tree, and (3) we
don't need to worry about the increased register pressure required to parallelize longer
sequences. It also seems unlikely that we would ever encounter really long strings of
dependent ops like that in the wild, but I'm not sure how to verify that speculation.
FWIW, I see no perf difference for test-suite running on btver2 (x86-64) with -ffast-math
and this patch.
We can extend this patch to cover other associative operations such as fmul, fmax, fmin,
integer add, integer mul.
This is a partial fix for:
https://llvm.org/bugs/show_bug.cgi?id=17305
and if extended:
https://llvm.org/bugs/show_bug.cgi?id=21768https://llvm.org/bugs/show_bug.cgi?id=23116
The issue also came up in:
http://reviews.llvm.org/D8941
Differential Revision: http://reviews.llvm.org/D9232
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236031 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We don't seem to need to assert here, since this function's callers expect
to get a nullptr on error. This way we don't assert on user input.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9308
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236027 91177308-0d34-0410-b5e6-96231b3b80d8
We don't need codegen-only intrinsic instructions for the vector forms of these instructions.
This makes the reciprocal estimate instruction lowering identical to how we handle normal
square roots: (V)SQRTPS / (V)SQRTPD.
No existing regression tests fail with this patch.
Differential Revision: http://reviews.llvm.org/D9301
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236013 91177308-0d34-0410-b5e6-96231b3b80d8
llc converts all feature strings to lower case, while the LLVM C API
does not, so we need a lower case alias in order to test this with llc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236003 91177308-0d34-0410-b5e6-96231b3b80d8
We need to track if an AddrSpaceCast expression was seen when
generating an MCExpr for a ConstantExpr. This change introduces a
custom lowerConstant method to the NVPTX asm printer that will create
NVPTXGenericMCSymbolRefExpr nodes at the appropriate places to encode
the information that a given symbol needs to be casted to a generic
address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236000 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step to using the IR-level floating-point fast-math-flags in the SDAG (D8900).
In this patch, we introduce the optimization flags as their own struct. As noted in the TODO comment,
we should eventually share this data between the IR passes and the backend.
We also switch the existing nsw / nuw / exact bit functionality of the BinaryWithFlagsSDNode class to
use the new struct.
The tradeoff is that instead of using the free but limited space of SDNode's SubclassData, we add a
data member to the subclass. This means we don't have to repeat all of the get/set methods per flag,
but we're potentially adding size to all nodes of this subclassi type.
In practice on 64-bit systems (measured on Linux and MacOS X), there is no size difference between an
SDNode and BinaryWithFlagsSDNode after this change: they're both 80 bytes. This means that we had at
least one free byte to play with due to struct alignment.
Differential Revision: http://reviews.llvm.org/D9325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235997 91177308-0d34-0410-b5e6-96231b3b80d8
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235989 91177308-0d34-0410-b5e6-96231b3b80d8
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235977 91177308-0d34-0410-b5e6-96231b3b80d8
As a space optimization, this instruction would just encode the pointer
type of the first operand and use the knowledge that the second and
third operands would be of the pointee type of the first. When typed
pointers go away, this assumption will no longer be available - so
encode the type of the second operand explicitly and rely on that for
the third.
Test case added to demonstrate the backwards compatibility concern,
which only comes up when the definition of the second operand comes
after the use (hence the weird basic block sequence) - at which point
the type needs to be explicitly encoded in the bitcode and the record
length changes to accommodate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235966 91177308-0d34-0410-b5e6-96231b3b80d8
This matches other assemblers and is less unexpected (e.g. PR23227).
On ELF, I tried binutils gas v2.24 and nasm 2.10.09, and they both
agree on LShr. On COFF, I couldn't get my hands on an assembler yet,
so don't change the behavior. For now, don't change it on non-AArch64
Darwin either, as the other assembler is gas v1.38, which does an AShr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235963 91177308-0d34-0410-b5e6-96231b3b80d8
Support up to 2^16 arguments to a function. If we do hit the limit,
assert out rather than restarting at 0 as we've done historically.
This fixes PR23332. A clang test will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235955 91177308-0d34-0410-b5e6-96231b3b80d8