AArch64 is going to need some kind of cache-invalidation in order to
successfully JIT since it has a weak memory-model. This is provided by
a __clear_cache builtin in libgcc, which acts very much like the
32-bit ARM equivalent (on platforms where it exists).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181129 91177308-0d34-0410-b5e6-96231b3b80d8
This let us to remove some custom code that matched constant offsets
from globals at instruction selection time as a special addressing mode.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181126 91177308-0d34-0410-b5e6-96231b3b80d8
The code now makes use of ComputeMaskedBits,
SelectionDAG::isBaseWithConstantOffset and TargetLowering::isGAPlusOffset
where appropriate reducing the amount of logic needed in XCoreISelLowering.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181125 91177308-0d34-0410-b5e6-96231b3b80d8
Thread local storage is not supported by the XMOS linker so we handle
thread local variables by lowering the variable to an array of n elements
(where n is the number of hardware threads per core, currently 8
for all XMOS devices) indexed by the the current thread ID.
Previously this lowering was spread across the XCoreISelLowering and the
XCoreAsmPrinter classes. Moving this to a separate pass should be much
cleaner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181124 91177308-0d34-0410-b5e6-96231b3b80d8
Supporting TLS in the large memory model is rather difficult at the
moment, so make sure no-one gets into difficulties by mistake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181121 91177308-0d34-0410-b5e6-96231b3b80d8
The MOVZ/MOVK instruction sequence may not be the most efficient (a
literal-pool load could be better) but adding that would require
reinstating the ConstantIslands pass.
For now the sequence is correct, and that's enough. Beware, as of
commit GNU ld does not appear to support the relocations needed for
this. Its primary purpose (for now) will be to support JITed code,
since in that case there is no guarantee of where your code will end
up in memory relative to external symbols it references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181117 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to get get rid of a hack in XCoreTargetObjectFile where the
the DataRel* sections were overridden.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181116 91177308-0d34-0410-b5e6-96231b3b80d8
The intended semantics mirror autoconf, where the user is able to
specify a host triple, but if it's left to the build system then
"config.guess" is invoked for the default.
This also renames the LLVM_HOSTTRIPLE define to LLVM_HOST_TRIPLE to
fit in with the style of the surrounding defines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181112 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we hava a convinient place to keep it, remeber the set of
identified structs as we merge modules.
This speeds up the linking of all the bitcode files in clang with the
gold plugin and -plugin-opt=emit-llvm (i.e., link only, no codegen) from
5:25 minutes to 13.6 seconds!
Patch by Xiaofei Wan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181104 91177308-0d34-0410-b5e6-96231b3b80d8
Update comments, fix * placement, fix method names that are not
used in clang, add a linkInModule that takes a Mode and put it
in Linker.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181099 91177308-0d34-0410-b5e6-96231b3b80d8
The linker is now responsible only for actually linking the modules, it
is up to the clients to create and destroy them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181098 91177308-0d34-0410-b5e6-96231b3b80d8
PowerPC assemblers are supposed to support a stand-alone '$' symbol
as an alternative of '.' to refer to the current PC. This does not
work in the LLVM assembler parser yet.
To avoid bootstrap failures when using the LLVM assembler as system
assembler, this patch modifies the assembler source code generated
by LLVM to avoid using '$' (and simply use '.' instead).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181054 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for PowerPC platform-specific variant
kinds in MCSymbolRefExpr::getVariantKindForName, and also
adds a test case to verify they are translated to the appropriate
fixup type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181053 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a couple of Book II instructions (isync, icbi) to the
PowerPC assembler parser. These are needed when bootstrapping clang
with the integrated assembler forced on, because they are used in
inline asm statements in the code base.
The test case adds the full list of Book II storage control instructions,
including associated extended mnemonics. Again, those that are not yet
supported as marked as FIXME.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181052 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds infrastructure to support extended mnemonics in the
PowerPC assembler parser. It adds support specifically for those
extended mnemonics that LLVM will itself generate.
The test case lists *all* extended mnemonics according to the
PowerPC ISA v2.06 Book I, but marks those not yet supported
as FIXME.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181051 91177308-0d34-0410-b5e6-96231b3b80d8
This adds assembler parser support to the PowerPC back end.
The parser will run for any powerpc-*-* and powerpc64-*-* triples,
but was tested only on 64-bit Linux. The supported syntax is
intended to be compatible with the GNU assembler.
The parser does not yet support all PowerPC instructions, but
it does support anything that is generated by LLVM itself.
There is no support for testing restricted instruction sets yet,
i.e. the parser will always accept any instructions it knows,
no matter what feature flags are given.
Instruction operands will be checked for validity and errors
generated. (Error handling in general could still be improved.)
The patch adds a number of test cases to verify instruction
and operand encodings. The tests currently cover all instructions
from the following PowerPC ISA v2.06 Book I facilities:
Branch, Fixed-point, Floating-Point, and Vector.
Note that a number of these instructions are not yet supported
by the back end; they are marked with FIXME.
A number of follow-on check-ins will add extra features. When
they are all included, LLVM passes all tests (including bootstrap)
when using clang -cc1as as the system assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181050 91177308-0d34-0410-b5e6-96231b3b80d8
This function consists of following steps:
1. Collect dependent memory accesses.
2. Analyze availability.
3. Perform fully redundancy elimination, or
4. Perform PRE, depending on the availability
Step 2, 3 and 4 are now moved to three helper routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181047 91177308-0d34-0410-b5e6-96231b3b80d8
its fields.
This removes false dependencies between DSP instructions which access different
fields of the the control register. Implicit register operands are added to
instructions RDDSP and WRDSP after instruction selection, depending on the
value of the mask operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181041 91177308-0d34-0410-b5e6-96231b3b80d8
By supporting the vectorization of PHINodes with more than two incoming values we can increase the complexity of nested if statements.
We can now vectorize this loop:
int foo(int *A, int *B, int n) {
for (int i=0; i < n; i++) {
int x = 9;
if (A[i] > B[i]) {
if (A[i] > 19) {
x = 3;
} else if (B[i] < 4 ) {
x = 4;
} else {
x = 5;
}
}
A[i] = x;
}
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181037 91177308-0d34-0410-b5e6-96231b3b80d8
The soon-to-be-committed SystemZ port uses 128-bit IEEE floats.
MIPS64 GNU/Linux does too (albeit with unusual NaNs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181016 91177308-0d34-0410-b5e6-96231b3b80d8
Another step towards reinstating the SystemZ backend. I'll commit
the configure changes separately (TARGET_HAS_JIT etc.), then commit
a patch to enable the MCJIT tests on SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181015 91177308-0d34-0410-b5e6-96231b3b80d8
The llvm::sys::AddSignalHandler function (as well as related routines) in
lib/Support/Unix/Signals.inc currently registers a signal handler routine
via "sigaction". When this handler is called due to a SIGSEGV, SIGILL or
similar signal, it will show a stack backtrace, deactivate the handler,
and then simply return to the operating system. The intent is that the
OS will now retry execution at the same location as before, which ought
to again trigger the same error condition and cause the same signal to be
delivered again. Since the hander is now deactivated, the OS will take
its default action (usually, terminate the program and possibly create
a core dump).
However, this method doesn't work reliably on System Z: With certain
signals (namely SIGILL, SIGFPE, and SIGTRAP), the program counter stored
by the kernel on the signal stack frame (which is the location where
execution will resume) is not the instruction that triggered the fault,
but then instruction *after it*. When the LLVM signal handler simply
returns to the kernel, execution will then resume at *that* address,
which will not trigger the problem again, but simply go on and execute
potentially unrelated code leading to random errors afterwards.
To fix this, the patch simply goes and re-raises the signal in question
directly from the handler instead of returning from it. This is done
only on System Z and only for those signals that have this particular
problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181010 91177308-0d34-0410-b5e6-96231b3b80d8
Build attribute sections can now be read if they exist via ELFObjectFile, and
the llvm-readobj tool has been extended with an option to dump this information
if requested. Regression tests are also included which exercise these features.
Also update the docs with a fixed ARM ABI link and a new link to the Addenda
which provides the build attributes specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181009 91177308-0d34-0410-b5e6-96231b3b80d8
Another step towards reinstating the SystemZ backend. Tests will be
included in the main backend patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181008 91177308-0d34-0410-b5e6-96231b3b80d8