debug output is showing machine instructions, the IR-level basic block names
aren't very meaningful, and because multiple machine basic blocks may be
derived from one IR-level BB, they're also not unique.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102960 91177308-0d34-0410-b5e6-96231b3b80d8
beneficial cases. See the changes in test/CodeGen/X86/tail-opts.ll and
test/CodeGen/ARM/ifcvt2.ll for details.
The fix is to change HashEndOfMBB to hash at most one instruction,
instead of trying to apply heuristics about when it will be profitable to
consider more than one instruction. The regular tail-merging heuristics
are already prepared to handle the same cases, and they're more precise.
Also, make test/CodeGen/ARM/ifcvt5.ll and
test/CodeGen/Thumb2/thumb2-branch.ll slightly more complex so that they
continue to test what they're intended to test.
And, this eliminates the problem in
test/CodeGen/Thumb2/2009-10-15-ITBlockBranch.ll, the testcase from
PR5204. Update it accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102907 91177308-0d34-0410-b5e6-96231b3b80d8
preventing the emission of the NOP on Darwin for a
function with no actual code. From timberwolfmc
with TEST=optllcdbg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102843 91177308-0d34-0410-b5e6-96231b3b80d8
code, and to eliminate the need for the SelectionDAGBuilder
state to be live during CodeGenAndEmitDAG calls.
Call SDB->clear() before CodeGenAndEmitDAG calls instead of
before it, and move the CurDAG->clear() out of SelectionDAGBuilder,
which doesn't own the DAG, and into CodeGenAndEmitDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102814 91177308-0d34-0410-b5e6-96231b3b80d8
indexes could be of a different value type. Or not even using the same SDNode
for the constant (weird, I know). Compare the actual values instead of the
pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102791 91177308-0d34-0410-b5e6-96231b3b80d8
instruction selection is done; it's confusing to see parts of it printed,
while other parts are omitted, along the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102771 91177308-0d34-0410-b5e6-96231b3b80d8
call that might throw. The landing pad assumes that all registers are in stack
slots.
We used to spill those dirty CSRs after the call, and the stack slots would be
wrong when arriving at the landing pad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102770 91177308-0d34-0410-b5e6-96231b3b80d8
of different register classes. e.g.
%reg1048:3<def> = EXTRACT_SUBREG %RAX<kill>, 3
Where %reg1048 is a GR32 register. This is not impossible to handle, but it is
pretty hard and very rare.
This should unbreak the dragonegg builder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102672 91177308-0d34-0410-b5e6-96231b3b80d8
- Also, update dbg_value is the value is being re-matted from a frame slot, e.g. fixed slots for arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102565 91177308-0d34-0410-b5e6-96231b3b80d8
alignment of globals to the preferred alignment, but only when
there is no section specified on the global (by far the common
case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102515 91177308-0d34-0410-b5e6-96231b3b80d8
update them. Computing kill flags is notoriously difficult, and the coalescer
would get it wrong sometimes, and it would completely skip physical registers.
Now we simply remove kill flags based on the live intervals after coalescing.
This is a few percent slower, but now we get correct kill flags for physical
registers after coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102510 91177308-0d34-0410-b5e6-96231b3b80d8