utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
dsymutil would like to use all the AsmPrinter/MCStreamer infrastructure
to stream out the DWARF. In order to do so, it will reuse the DIE object
and so this header needs to be public.
The interface exposed here has some corners that cannot be used without a
DwarfDebug object, but clients that want to stream Dwarf can just avoid
these.
Differential Revision: http://reviews.llvm.org/D6695
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225208 91177308-0d34-0410-b5e6-96231b3b80d8
no DWARF register number mapping, or if the register was a virtual
register that was never materialized. Previously, we would just emit a
bogus location, after this patch we don't emit a location at all by
doing an early exit.
After my bugfix in r223401 today, this doesn't actually happen on any
target that I tested this with, but it's still preferable to make the
possibility of a failure explicit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223428 91177308-0d34-0410-b5e6-96231b3b80d8
Clang -gsplit-dwarf self-host -O0, binary increases by 0.0005%, -O2,
binary increases by 25%.
A large binary inside Google, split-dwarf, -O0, and other internal flags
(GDB index, etc) increases by 1.8%, optimized build is 35%.
The size impact may be somewhat greater in .o files (I haven't measured
that much - since the linked executable -O0 numbers seemed low enough)
due to relocations. These relocations could be removed if we taught the
llvm-symbolizer to handle indexed addressing in the .o file (GDB can't
cope with this just yet, but GDB won't be reading this info anyway).
Also debug_ranges could be shared between .o and .dwo, though ideally
debug_ranges would get a schema that could used index(+offset)
addressing, and move to the .dwo file, then we'd be back to sharing
addresses in the address pool again.
But for now, these sizes seem small enough to go ahead with this.
Verified that no other DW_TAGs are produced into the .o file other than
subprograms and inlined_subroutines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221306 91177308-0d34-0410-b5e6-96231b3b80d8
This generalizes the range handling for ranges in both the skeleton and
full unit, laying the foundation for the addition of more ranges (rather
than just the CU's special case) in the skeleton CU with fission+gmlt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221202 91177308-0d34-0410-b5e6-96231b3b80d8
Currently we only need to emit skeleton strings into the CU header and
we do this by explicitly calling "addLocalString". With gmlt-in-fission,
we'll be emitting a bunch of other strings from other codepaths where
it's not statically known that these strings will be local or not.
Introduce a virtual function to indicate whether this unit is a DWO unit
or not (I'm not sure if we have a good term for this, the
opposite/alternative to 'skeleton' unit) and use that to generalize the
string emission logic so that strings can be correctly emitted in both
the skeleton and dwo unit when in split dwarf mode.
And to demonstrate that this works, switch the existing special callers
of addLocalString in the skeleton builder to addString - and they still
work. Yay.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221094 91177308-0d34-0410-b5e6-96231b3b80d8
This is a useful distinction/invariant/delination to make because
LineTablesOnly mode is never relevant to type units, so it's clear that
we're not doing weird line-tables-only-with-types by making this API
choice.
It also lays the foundations nicely for adding gmlt-like data to fission
skeleton CUs while limiting the effects to CUs and not TUs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221093 91177308-0d34-0410-b5e6-96231b3b80d8
(these will shortly become virtual, with a null implementation in
DwarfUnit (since type units don't have accelerator tables in the current
schema) and the current implementation down in DwarfCompileUnit, moving
the actual maps there too)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221082 91177308-0d34-0410-b5e6-96231b3b80d8
This was a compile-unit specific label (unused in type units) and seems
unnecessary anyway when we can more easily directly compute the size of
the compile unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221067 91177308-0d34-0410-b5e6-96231b3b80d8
Type units no longer have skeletons and it's misleading to be able to
query for a type unit's skeleton (it might incorrectly lead one to
conclude that if a unit doesn't have a skeleton it's not in a .dwo
file... ).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221055 91177308-0d34-0410-b5e6-96231b3b80d8
So that it has access to getOrCreateGlobalVariableDIE. If we ever support
decsribing using directive in C++ classes (thus requiring support in type
units), it will certainly use another mechanism anyway.
Differential Revision: http://reviews.llvm.org/D5975
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220594 91177308-0d34-0410-b5e6-96231b3b80d8
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219103 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for sinking all the subprogram emission code down from
DwarfDebug into DwarfCompileUnit, this will avoid bloating
DwarfUnit.h/cpp greatly and make concerns a bit more clear/isolated.
(sinking this handling down is part of the work to handle emitting
minimal subprograms for -gmlt-like data into the skeleton CU under
fission)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219057 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This will allow to request the creation of a forward delacred variable
at is point of use (for imported declarations, this will be
DwarfDebug::constructImportedEntityDIE) rather than having to put the
forward decl in a retention list.
Note that getOrCreateGlobalVariable returns the actual definition DIE when the
routine creates a declaration and a definition DIE. If you agree this is the
right behavior, then I'll have a followup patch that registers the definition
in the DIE map instead of the declaration as it is today (this 'breaks' only
one test, where we test that the imported entity is the declaration). I'm
not sure what's best here, but it's easy enough for a consumer to follow the
DW_AT_specification link to get to the declaration, whereas it takes more
work to find the actual definition from a declaration DIE.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5381
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218126 91177308-0d34-0410-b5e6-96231b3b80d8
So that the two operations in DwarfDebug couldn't get separated (because
I accidentally separated them in some work in progress), put them
together. While we're here, move DwarfUnit::addRange to
DwarfCompileUnit, since it's not relevant to type units.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217468 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214576 91177308-0d34-0410-b5e6-96231b3b80d8
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214132 91177308-0d34-0410-b5e6-96231b3b80d8
This recommits r208930, r208933, and r208975 (by reverting r209338) and
reverts r209529 (the FIXME to readd this functionality once the tools
were fixed) now that DWP has been fixed to cope with a single section
for all fission type units.
Original commit message:
"Since type units in the dwo file are handled by a debug aware tool,
they don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213956 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't fix the abstract variable handling yet, but it introduces a
similar delay mechanism as was added for subprograms, causing
DW_AT_location to be reordered to the beginning of the attribute list
for local variables, and fixes all the test fallout for that.
A subsequent commit will remove the abstract variable handling in
DbgVariable and just do the abstract variable lookup at module end to
ensure that abstract variables introduced after their concrete
counterparts are appropriately referenced by the concrete variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210943 91177308-0d34-0410-b5e6-96231b3b80d8
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210379 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed in r207717, I clearly didn't look very closely at
the code to understand how existing things were working...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209680 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209338 91177308-0d34-0410-b5e6-96231b3b80d8
Since type units in the dwo file are handled by a debug aware tool, they
don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208930 91177308-0d34-0410-b5e6-96231b3b80d8
And the winner by a nose is isUnsignedDIType, for no particular reason.
These two functions were just complements of each other and used in very
related code, so refactor callers to just use one of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208500 91177308-0d34-0410-b5e6-96231b3b80d8
Doesn't seem a good reason to duplicate this code (it was more literally
duplicated prior to r208494, and while the dataN code /does/ actually
fire in this case, it doesn't seem necessary (and the DWARF standard
recommends using udata/sdata pervasively instead of dataN, so as to
indicate signedness of the values))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208495 91177308-0d34-0410-b5e6-96231b3b80d8