Some paths through the copy constructors for 'ErrorOr' were calling
'get' when 'HasError' and 'IsValid' were not properly initialized.
Depending on what happened to be in memory for those member variables
the asserts in 'get' might incorrectly fire. Fixed by ensuring that
the member variables in question are always initialized before calling
'get'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174381 91177308-0d34-0410-b5e6-96231b3b80d8
This change lets us bootstrap LLVM/Clang under ASan and MSan. It contains
fixes for 2 issues:
- X86JIT reads return address from stack, which MSan does not know is
initialized.
- bugpoint tests run binaries with RLIMIT_AS. This does not work with certain
Sanitizers.
We are no longer including config.h in Compiler.h with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174306 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8
ErrorOr<void> represents an operation that returns nothing, but can still fail.
It should be used in cases where you need the aditional user data that ErrorOr
provides over error_code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173209 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r171845, which fixes the same issue in the Support code.
Only targets with >256 relocations (principally AArch64) should be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173151 91177308-0d34-0410-b5e6-96231b3b80d8
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
Support for Mips register information sections.
Mips ELF object files have a section that is dedicated
to register use info. Some of this information such as
the assumed Global Pointer value is used by the linker
in relocation resolution.
The register info file is .reginfo in o32 and .MIPS.options
in 64 and n32 abi files.
This patch contains the changes needed to create the sections,
but leaves the actual register accounting for a future patch.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172847 91177308-0d34-0410-b5e6-96231b3b80d8
In r143502, we renamed getHostTriple() to getDefaultTargetTriple()
as part of work to allow the user to supply a different default
target triple at configure time. This change also affected the JIT.
However, it is inappropriate to use the default target triple in the
JIT in most circumstances because this will not necessarily match
the current architecture used by the process, leading to illegal
instruction and other such errors at run time.
Introduce the getProcessTriple() function for use in the JIT and
its clients, and cause the JIT to use it. On architectures with a
single bitness, the host and process triples are identical. On other
architectures, the host triple represents the architecture of the
host CPU, while the process triple represents the architecture used
by the host CPU to interpret machine code within the current process.
For example, when executing 32-bit code on a 64-bit Linux machine,
the host triple may be 'x86_64-unknown-linux-gnu', while the process
triple may be 'i386-unknown-linux-gnu'.
This fixes JIT for the 32-on-64-bit (and vice versa) build on non-Apple
platforms.
Differential Revision: http://llvm-reviews.chandlerc.com/D254
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172627 91177308-0d34-0410-b5e6-96231b3b80d8
Like Clang's FixItHint, SMFixIt represents an insertion, replacement, or
removal of source text. One or more fix-its can be emitted as part of
a diagnostic, and will be printed below the source range line to show the
user how they can fix their code.
Currently, the only client of SMFixIt is clang-tblgen; thus, the tests for
this behavior live in clang/test/TableGen/tg-fixits.td. If/when SMFixIt is
adopted within LLVM itself, those tests should be moved to the LLVM suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172086 91177308-0d34-0410-b5e6-96231b3b80d8
into a new function llvm::sys::PrintStackTrace, so that it's available to clients for logging purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171989 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adjust the r171506 to make all DWARF enconding pc-relative
for PPC64. It also adds the R_PPC64_REL32 relocation handling in MCJIT
(since the eh_frame will not generate PIC-relative relocation) and also
adds the emission of stubs created by the TTypeEncoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171979 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using BumpPtrAllocator for HNodes because
they have fields (vector, map) which require HNode
destructors to be run.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171896 91177308-0d34-0410-b5e6-96231b3b80d8
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171765 91177308-0d34-0410-b5e6-96231b3b80d8
turning a code like this:
if (foo)
free(foo)
into that:
free(foo)
Move a call to free from basic block FB into FB's predecessor, P,
when the path from P to FB is taken only if the argument of free is
not equal to NULL.
Some restrictions apply on P and FB to be sure that this code motion
is profitable. Namely:
1. FB must have only one predecessor P.
2. FB must contain only the call to free plus an unconditional
branch to S.
3. P's successors are FB and S.
Because of 1., we will not increase the code size when moving the call
to free from FB to P.
Because of 2., FB will be empty after the move.
Because of 2. and 3., P's branch instruction becomes useless, so as FB
(simplifycfg will do the job).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171762 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to the existing Recycler allocator, but instead of
recycling individual objects from a BumpPtrAllocator, arrays of
different sizes can be allocated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171581 91177308-0d34-0410-b5e6-96231b3b80d8
if-ed out code paths and on Windows. Hopefully restores the Windows
build. Thanks to Reid Kleckner for helping triage this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171568 91177308-0d34-0410-b5e6-96231b3b80d8
wall time, user time, and system time since a process started.
For walltime, we currently use TimeValue's interface and a global
initializer to compute a close approximation of total process runtime.
For user time, this adds support for an somewhat more precise timing
mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock
selected.
For system time, we have to do a full getrusage call to extract the
system time from the OS. This is expensive but unavoidable.
In passing, clean up the implementation of the old APIs and fix some
latent bugs in the Windows code. This might have manifested on Windows
ARM systems or other systems with strange 64-bit integer behavior.
The old API for this both user time and system time simultaneously from
a single getrusage call. While this results in fewer system calls, it
also results in a lower precision user time and if only user time is
desired, it introduces a higher overhead. It may be worthwhile to switch
some of the pass timers to not track system time and directly track user
and wall time. The old API also tracked walltime in a confusing way --
it just set it to the current walltime rather than providing any measure
of wall time since the process started the way buth user and system time
are tracked. The new API is more consistent here.
The plan is to eventually implement these methods for a *child* process
by using the wait3(2) system call to populate an rusage struct
representing the whole subprocess execution. That way, after waiting on
a child process its stats will become accurate and cheap to query.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171551 91177308-0d34-0410-b5e6-96231b3b80d8
A BumpPtrAllocator has an empty Deallocate() method, but
Recycler::clear() would still call it for every single object ever
allocated, bringing all those objects into cache. As a bonus,
iplist::remove() will also write to the Prev/Next pointers on all the
objects, so all those cache lines have to be written back to RAM before
the pages are given back to the OS.
Stop wasting time and memory bandwith by using the new
clearAndLeakUnsafely() function to jettison all the recycled objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171541 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the PPC eh_frame definitions for the personality and
frame unwinding for PIC objects. It makes PIC build correctly creates
relative relocations in the '.rela.eh_frame' segments and thus avoiding
a text relocation that generates a DT_TEXTREL segments in link phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171506 91177308-0d34-0410-b5e6-96231b3b80d8
Users of LLVM_BUILTIN_UNREACHABLE should be responsible in the case when LLVM_BUILTIN_UNREACHABLE is undefined.
Actually, (0, (p)) in LLVM_ASSUME_ALIGNED(p, a) caused thousands of warnings on g++-4.4. It was a motivation in this commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171455 91177308-0d34-0410-b5e6-96231b3b80d8
* Add support for specifying the alignment to use.
* Add the concept of native endianness. Used for unaligned native types.
The native alignment and read/write simplification is based on a patch by Richard Smith.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171406 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
through the static helper functions. This is already true throughout the
codebase.
Slowly, I'm going to re-implement these static helpers in terms of a new
process based interface which can expose more information, and remove
the program object entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171335 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the old API in terms of the new one. This simplifies the
implementation on Windows which can now re-use the self_process's once
initialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171330 91177308-0d34-0410-b5e6-96231b3b80d8
a union. These don't actually work for by-value function arguments, and
MSVC warns if they exist even while (we hope) it aligns the argument
correctly due to the other union member.
This means MSVC will miss out on optimizations based on the alignment of
the buffer, but really, there aren't that many for x86 and MSVC is
likely not doing a great job of optimizing LLVM and Clang anyways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171328 91177308-0d34-0410-b5e6-96231b3b80d8
This adds AlignedCharArray<Alignment, Size>. A templated struct that contains
a member named buffer of type char[Size] that is aligned to Alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171319 91177308-0d34-0410-b5e6-96231b3b80d8
The coding style used here is not LLVM's style because this is modeled
after a Boost interface and thus done in the style of a candidate C++
standard library interface. I'll probably end up proposing it as
a standard C++ library if it proves to be reasonably portable and
useful.
This is just the most basic parts of the interface -- getting the
process ID out of it. However, it helps sketch out some of the boiler
plate such as the base class, derived class, shared code, and static
factory function. It also introduces a unittest so that I can
incrementally ensure this stuff works.
However, I've not even compiled this code for Windows yet. I'll try to
fix any Windows fallout from the bots, and if I can't fix it I'll revert
and get someone on Windows to help out. There isn't a lot more that is
mandatory, so soon I'll switch to just stubbing out the Windows side and
get Michael Spencer to help with implementation as he can test it
directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171289 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM libraries. Also, clean up the doxygen and formatting of the
existing interfaces.
With this change I'm calling the existing interface "legacy" because I'd
like to replace it with something much better. My end goal is to expose
a common set of interfaces for inspecting various properties of
a process, and implementations to expose those both for the current
process and for child processes. This will also expose more rich
interfaces for spawning and controling a subprocess, notably to use
system calls like wait3 and wait4 where available and gather detailed
resource usage stats about the subprocess.
My plan (discussed with Michael Spencer on IRC) is to base this loosely
around the proposed Boost.Process interface, but to implement
a relatively small subset of that functionality based around the needs
of LLVM, Clang, the Clang driver, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171285 91177308-0d34-0410-b5e6-96231b3b80d8
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170209 91177308-0d34-0410-b5e6-96231b3b80d8
Provides m_Argument that allows matching against a CallSite's specified argument. Provides m_Intrinsic pattern that can be templatized over the intrinsic id and bind/match arguments similarly to other pattern matchers. Implementations provided for 0 to 4 arguments, though it's very simple to extend for more. Also provides example template specialization for bswap (m_BSwap) and example of code cleanup for its use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170091 91177308-0d34-0410-b5e6-96231b3b80d8
PowerPC target. This is the last of the four models, so we now have
full TLS support.
This is mostly a straightforward extension of the general dynamic model.
I had to use an additional Chain operand to tie ADDIS_DTPREL_HA to the
register copy following ADDI_TLSLD_L; otherwise everything above the
ADDIS_DTPREL_HA appeared dead and was removed.
As before, there are new test cases to test the assembly generation, and
the relocations output during integrated assembly. The expected code
gen sequence can be read in test/CodeGen/PowerPC/tls-ld.ll.
There are a couple of things I think can be done more efficiently in the
overall TLS code, so there will likely be a clean-up patch forthcoming;
but for now I want to be sure the functionality is in place.
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170003 91177308-0d34-0410-b5e6-96231b3b80d8
m_ConstantFP - match and bind a float constant
m_SpecificConstantFP - match a specific floating point value or vector of floats of that value
m_FPOne - match a floating point 1.0 or vector of 1.0s
m_NegZero - match -0.0
m_AnyZero - match 0 or -0.0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169939 91177308-0d34-0410-b5e6-96231b3b80d8
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
Change member types of RuntimeFunction and UnwindInfo from uint64_t to
uint32_t:
These members represent addresses. According to MSDN, they are image
relative, that is, they are 32-bit offsets from the starting address
of the image that contains the function table entry.
See MSDN for more information:
RUNTIME_FUNCTION: http://msdn.microsoft.com/en-us/library/ft9x1kdx.aspx
UNWIND_INFO: http://msdn.microsoft.com/en-us/library/ddssxxy8.aspx
Make Win64.h platform-neutral:
The standard types unit8_t, uint16_t and uint32_t are replaced with
their counterparts from Endian.h. Accessor functions are introduced to
replace bit fields.
Patch by João Matos and Kai Nacke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169414 91177308-0d34-0410-b5e6-96231b3b80d8
on 64-bit PowerPC ELF.
The patch includes code to handle external assembly and MC output with the
integrated assembler. It intentionally does not support the "old" JIT.
For the initial-exec TLS model, the ABI requires the following to calculate
the address of external thread-local variable x:
Code sequence Relocation Symbol
ld 9,x@got@tprel(2) R_PPC64_GOT_TPREL16_DS x
add 9,9,x@tls R_PPC64_TLS x
The register 9 is arbitrary here. The linker will replace x@got@tprel
with the offset relative to the thread pointer to the generated GOT
entry for symbol x. It will replace x@tls with the thread-pointer
register (13).
The two test cases verify correct assembly output and relocation output
as just described.
PowerPC-specific selection node variants are added for the two
instructions above: LD_GOT_TPREL and ADD_TLS. These are inserted
when an initial-exec global variable is encountered by
PPCTargetLowering::LowerGlobalTLSAddress(), and later lowered to
machine instructions LDgotTPREL and ADD8TLS. LDgotTPREL is a pseudo
that uses the same LDrs support added for medium code model's LDtocL,
with a different relocation type.
The rest of the processing is straightforward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169281 91177308-0d34-0410-b5e6-96231b3b80d8
AKA: Recompile *ALL* the source code!
This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168996 91177308-0d34-0410-b5e6-96231b3b80d8
references from whether it supports an R-value reference *this. No
version of GCC today supports the latter, which breaks GCC C++11
compiles of LLVM and Clang now.
Also add doxygen comments clarifying what's going on here, and update
the usage in Optional. I'll update the usages in Clang next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168993 91177308-0d34-0410-b5e6-96231b3b80d8
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168972 91177308-0d34-0410-b5e6-96231b3b80d8
This expands to '&', and is intended to be used when an /optional/ rvalue
override is available.
Before:
void foo() const { ... }
After:
void foo() const LLVM_LVALUE_FUNCTION { ... }
void foo() && { ... }
This is used to allow moving the contents of an Optional.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168963 91177308-0d34-0410-b5e6-96231b3b80d8
appropriate unit tests. This change in itself is not expected to
affect any functionality at this point, but it will serve as a
stepping stone to improve FileCheck's variable matching capabilities.
Luckily, our regex implementation already supports backreferences,
although a bit of hacking is required to enable it. It supports both
Basic Regular Expressions (BREs) and Extended Regular Expressions
(EREs), without supporting backrefs for EREs, following POSIX strictly
in this respect. And EREs is what we actually use (rightly). This is
contrary to many implementations (including the default on Linux) of
POSIX regexes, that do allow backrefs in EREs.
Adding backref support to our EREs is a very simple change in the
regcomp parsing code. I fail to think of significant cases where it
would clash with existing things, and can bring more versatility to
the regexes we write. There's always the danger of a backref in a
specially crafted regex causing exponential matching times, but since
we mainly use them for testing purposes I don't think it's a big
problem. [it can also be placed behind a flag specific to FileCheck,
if needed].
For more details, see:
* http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-November/055840.html
* http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121126/156878.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168802 91177308-0d34-0410-b5e6-96231b3b80d8
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
The rationale is to get YAML filenames in diagnostics from
yaml::Stream::printError -- currently the filename is hard-coded as
"YAML" because there's no buffer information available.
Patch by Kim Gräsman!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168341 91177308-0d34-0410-b5e6-96231b3b80d8
values in a map that can be passed to consumers. Add a testcase that
ensures this works for llvm-dwarfdump.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167558 91177308-0d34-0410-b5e6-96231b3b80d8
is that the unit test doesn't have IntTy equal to APInt, instead it uses a class
derived from APInt. When, as in these lines, an IntTy& reference is returned
but is assigned to an APInt&, the compiler destroys the temporary the IntTy& was
referring to, leaving the APInt& referring to garbage. This causes the unittest
to fail systematically on my machine; it can also be caught by running the test
under valgrind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167356 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> et al. automatically infer when the cast is an upcast (including a
self-cast), so these are no longer necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165767 91177308-0d34-0410-b5e6-96231b3b80d8
Additionally, all such cases are handled with no dynamic check.
All `classof()` of the form
class Foo {
[...]
static bool classof(const Bar *) { return true; }
[...]
}
where Foo is an ancestor of Bar are no longer necessary.
Don't write them!
Note: The exact test is `is_base_of<Foo, Bar>`, which is non-strict, so
that Foo is considered an ancestor of itself.
This leads to the following rule of thumb for LLVM-style RTTI:
The argument type of `classof()` should be a strict ancestor.
For more information about implementing LLVM-style RTTI, see
docs/HowToSetUpLLVMStyleRTTI.rst
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165765 91177308-0d34-0410-b5e6-96231b3b80d8
folders and not having it here fails to compile if you actually try to use it.
Also, CreatePointerCast was failing to do the part where it does TD-aware
constant folding. Granted there is exactly one case where that it will ever
do anything, but there's no reason to skip it. For reference, that case is a
subtraction between two constant offsets on the same global variable, eg.,
"&A[123] - &A[4].f".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164760 91177308-0d34-0410-b5e6-96231b3b80d8
This silences several analyzer warnings within LLVM, and provides a slightly
nicer crash experience when someone calls isa<>, cast<>, or dyn_cast<> with
a null pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164439 91177308-0d34-0410-b5e6-96231b3b80d8
store this and use it to not emit long nops when the CPU is geode which
doesnt support them.
Fixes PR11212.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164132 91177308-0d34-0410-b5e6-96231b3b80d8
- The current_pos function is supposed to return all the written bytes, not the
current position of the underlying stream.
- This caused tell() to be broken whenever the underlying stream had buffered
content.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163948 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163902 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163790 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale: For each preprocessor macro, either the definedness is what's
meaningful, or the value is what's meaningful, or both. If definedness is
meaningful, we should use #ifdef. If the value is meaningful, we should use
and #ifdef interchangeably for the same macro, seems ugly to me, even if
undefined macros are zero if used.
This also has the benefit that including an LLVM header doesn't prevent
you from compiling with -Wundef -Werror.
Patch by John Garvin!
<rdar://problem/12189979>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163148 91177308-0d34-0410-b5e6-96231b3b80d8
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162572 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC doesn't support passing by-value parameters with alignment of
16-bytes or higher apparantly. What is deeply confusing is that it seems
to *sometimes* (but not always) apply this to any type whose alignment
is set using __declspec(align(...)). This caused lots of errors when we switch
SmallVector over to use the automatically aligned character array
utilities as they used __declspec(align(...)) heavily.
As a pretty horrible but effective work-around, we instead cherry pick
the smallest alignment sizes with specific types that happen to have the
correct alignment, and then fall back to the attribute solution past
them. This should resolve the MSVC build errors folks have been hitting.
Sorry for that. In good news, it will do this without introducing other
UB I hope. =]
Thanks to Timur Iskhodzhanov for helping me test this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162549 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor the TableGen'erated fixed length disassemblmer to use a
table-driven state machine rather than a massive set of nested
switch() statements.
As a result, the ARM Disassembler (ARMDisassembler.cpp) builds much more
quickly and generates a smaller end result. For a Release+Asserts build on
a 16GB 3.4GHz i7 iMac w/ SSD:
Time to compile at -O2 (averaged w/ hot caches):
Previous: 35.5s
New: 8.9s
TEXT size:
Previous: 447,251
New: 297,661
Builds in 25% of the time previously required and generates code 66% of
the size.
Execution time of the disassembler is only slightly slower (7% disassembling
10 million ARM instructions, 19.6s vs 21.0s). The new implementation has
not yet been tuned, however, so the performance should almost certainly
be recoverable should it become a concern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161888 91177308-0d34-0410-b5e6-96231b3b80d8
may invalidate its AliasSet because SSAUpdater does not update the AliasSet properly.
This patch teaches SSAUpdater to notify AliasSet that it made changes.
The testcase in PR12901 is too big to be useful and I could not reduce it to a normal size.
rdar://11872059 PR12901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161803 91177308-0d34-0410-b5e6-96231b3b80d8
- The defines are in stddint.h, which is #include'd already.
- The block wasn't used anyway, since it was _OpenBSD_, and not __OpenBSD__
Patch by David Hill!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161515 91177308-0d34-0410-b5e6-96231b3b80d8
yaml2obj takes a textual description of an object file in YAML format
and outputs the binary equivalent. This greatly simplifies writing
tests that take binary object files as input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161205 91177308-0d34-0410-b5e6-96231b3b80d8
Since the llvm::sys::fs::map_file_pages() support function it relies on
is not yet implemented on Windows, the unit tests for FileOutputBuffer
are currently conditionalized to run only on unix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161099 91177308-0d34-0410-b5e6-96231b3b80d8
CallInst for intrinsics. This allows users of the InstVisitor that would
like to special case certain very common intrinsics to do so naturally
in keeping with the type hierarchy's utility classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161006 91177308-0d34-0410-b5e6-96231b3b80d8
Function names should be camel case, and start with a lower case letter. No
functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160813 91177308-0d34-0410-b5e6-96231b3b80d8
- section types
- dynamic table entries tags
- state flags for DT_FLAGS_1 entry
The patch reviewed by Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160433 91177308-0d34-0410-b5e6-96231b3b80d8
the move of *Builder classes into the Core library.
No uses of this builder in Clang or DragonEgg I could find.
If there is a desire to have an IR-building-support library that
contains all of these builders, that can be easily added, but currently
it seems likely that these add no real overhead to VMCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160243 91177308-0d34-0410-b5e6-96231b3b80d8
IRBuilder, DIBuilder, etc.
This is the proper layering as MDBuilder can't be used (or implemented)
without the Core Metadata representation.
Patches to Clang and Dragonegg coming up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160237 91177308-0d34-0410-b5e6-96231b3b80d8
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159703 91177308-0d34-0410-b5e6-96231b3b80d8
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159659 91177308-0d34-0410-b5e6-96231b3b80d8