In discussing this change with Bill Schmidt, it was decided that the original
comment about negative FIs was incorrect. We'll still exclude them for now, but
now with a more-accurate explanation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186005 91177308-0d34-0410-b5e6-96231b3b80d8
Currently ARM is the only backend that supports FMA instructions (for at least some subtargets) but does not implement this virtual, so FMAs are never generated except from explicit fma intrinsic calls. Apparently this is due to the fact that it supports both fused (one rounding step) and unfused (two rounding step) multiply + add instructions. This patch clarifies that this the case without changing behavior by implementing the virtual function to simply return false, as the default TargetLoweringBase version does.
It is possible that some cpus perform the fused version faster than the unfused version and vice-versa, so the function implementation should be revisited if hard data is found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185994 91177308-0d34-0410-b5e6-96231b3b80d8
Propagate the fix from r185712 to Thumb2 codegen as well. Original
commit message applies here as well:
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and
packs them in the bottom half of "x". An arithmetic and logic shift are
only equivalent in this context if the shift amount is 16. We would be
shifting in ones into the bottom 16bits instead of zeros if "y" is
negative.
rdar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185982 91177308-0d34-0410-b5e6-96231b3b80d8
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185978 91177308-0d34-0410-b5e6-96231b3b80d8
Change the informal convention of DBG_VALUE machine instructions so that
we can express a register-indirect address with an offset of 0.
The old convention was that a DBG_VALUE is a register-indirect value if
the offset (operand 1) is nonzero. The new convention is that a DBG_VALUE
is register-indirect if the first operand is a register and the second
operand is an immediate. For plain register values the combination reg,
reg is used. MachineInstrBuilder::BuildMI knows how to build the new
DBG_VALUES.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185966 91177308-0d34-0410-b5e6-96231b3b80d8
Because integer BUILD_VECTOR operands may have a larger type than the result's
vector element type, and all operands must have the same type, when widening a
BUILD_VECTOR node by adding UNDEFs, we cannot use the vector element type, but
rather must use the type of the existing operands.
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185960 91177308-0d34-0410-b5e6-96231b3b80d8
A more complete example of the bug in PR16556 was recently provided,
showing that the previous fix was not sufficient. The previous fix is
reverted herein.
The real problem is that ReplaceNodeResults() uses LowerFP_TO_INT as
custom lowering for FP_TO_SINT during type legalization, without
checking whether the input type is handled by that routine.
LowerFP_TO_INT requires the input to be f32 or f64, so we fail when
the input is ppcf128.
I'm leaving the test case from the initial fix (r185821) in place, and
adding the new test as another crash-only check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185959 91177308-0d34-0410-b5e6-96231b3b80d8
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185956 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution::getSignedRange uses ComputeNumSignBits from ValueTracking on
ashr instructions. ComputeNumSignBits can return zero, but this case was not
handled correctly by the code in getSignedRange which was calling:
APInt::getSignedMinValue(BitWidth).ashr(NS - 1)
with NS = 0, resulting in an assertion failure in APInt::ashr.
Now, we just return the conservative result (as with NS == 1).
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185955 91177308-0d34-0410-b5e6-96231b3b80d8
(add nsw x, (and x, y)) isn't a power of two if x is zero, it's zero
(add nsw x, (xor x, y)) isn't a power of two if y has bits set that aren't set in x
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185954 91177308-0d34-0410-b5e6-96231b3b80d8
When folding sub x, x (and other similar constructs), where x is a vector, the
result is a vector of zeros. After type legalization, make sure that the input
zero elements have a legal type. This type may be larger than the result's
vector element type.
This was another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185949 91177308-0d34-0410-b5e6-96231b3b80d8
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
Test is not included as it is several 1000 lines long.
To test this functionnality, a test case must generate at least 2 ALU clauses,
where an ALU clause is ~110 instructions long.
NOTE: This is a candidate for the stable branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185943 91177308-0d34-0410-b5e6-96231b3b80d8